References

  1. J. Alchouron, C. Navarathna, P.M. Rodrigo, A. Snyder, H.D. Chludil, A.S. Vega, G. Bosi, F. Perez, D. Mohan, C.U. Pittman Jr., T.E. Mlsna, Household arsenic contaminated water treatment employing iron oxide/bamboo biochar composite: an approach to technology transfer, J. Colloid Interface Sci., 587 (2021) 767–779.
  2. R. Singh, S. Singh, P. Parihar, V.P. Singh, S.M. Prasad, Arsenic contamination, consequences and remediation techniques: a review, Ecotoxicol. Environ. Saf., 112 (2015) 247–270.
  3. P. Chutia, S. Kato, T. Kojima, S. Satokawa, Arsenic adsorption from aqueous solution on synthetic zeolites, J. Hazard. Mater., 162 (2009) 440–447.
  4. F.W. Pontius, K.G. Brown, C.J. Chen, Health implications of arsenic in drinking water, J. Am. Water Works Assn., 86 (1994) 52–63.
  5. A.A. Meharg, J. Hartley‐Whitaker, Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species, New Phytol., 154 (2002) 29–43.
  6. D. Vromman, J.-P. Martínez, M. Kumar, Z. Šlejkovec, S. Lutts, Comparative effects of arsenite (As(III)) and arsenate (As(V)) on whole plants and cell lines of the arsenic-resistant halophyte plant species Atriplex atacamensis, Environ. Sci. Pollut. Res., 25 (2018) 34473–34486.
  7. C.M. George, L. Sima, M.H.J. Arias, J. Mihalic, L.Z. Cabrera, D. Danz, W. Checkley, R.H. Gilman, Arsenic exposure in drinking water: an unrecognized health threat in Peru, Bull. World Health Organ., 92 (2014) 565–572.
  8. C.-C. Chen, Y.-C. Chung, Arsenic removal using a biopolymer chitosan sorbent, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 41 (2006) 645–658.
  9. J. Alchouron, C. Navarathna, H.D. Chludil, N.B. Dewage, F. Perez, E.B. Hassan, C.U. Pittman Jr., A.S. Vega, T.E. Mlsna, Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic(V) remediation, Sci. Total Environ., 706 (2020) 135943, https://doi.org/10.1016/j.scitotenv.2019.135943.
  10. H. Rasheed, P. Kay, R. Slack, Y.Y. Gong, A. Carter, Human exposure assessment of different arsenic species in household water sources in a high risk arsenic area, Sci. Total Environ., 584–585 (2017) 631–641.
  11. L. Singh, P. Semil, Removal of arsenic in aqueous solution by low cost adsorbent: a short review, Int. J. ChemTech Res., 5 (2013) 1299–1308.
  12. N.V. Vinh, M. Zafar, S.K. Behera, H.-S. Park, Arsenic(III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies, Int. J. Environ. Sci. Technol., 12 (2014) 1283–1294.
  13. D. Mohan, C.U. Pittman Jr., Arsenic removal from water/ wastewater using adsorbents—a critical review, J. Hazard. Mater., 142 (2007) 1–53.
  14. R. Kumar, M. Patel, P. Singh, J. Bundschuh, C.U. Pittman Jr., L. Trakal, D. Mohan, Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: methods, experience from, and options for Latin America, Sci. Total Environ., 694 (2019) 133427, https://doi.org/10.1016/j. scitotenv.2019.07.233.
  15. C.M. Navarathna, N.B. Dewage, C. Keeton, J. Pennisson, R. Henderson, B. Lashley, X.F. Zhang, E.B. Hassan, F. Perez, D. Mohan, C.U. Pittman Jr., T. Mlsna, Biochar adsorbents with enhanced hydrophobicity for oil spill removal, ACS Appl. Mater. Interfaces, 12 (2020) 9248–9260.
  16. X.-f. Tan, Y.-g. Liu, Y.-l. Gu, Y. Xu, G.-m. Zeng, X.-j. Hu, S.-b. Liu, X. Wang, S.-m. Liu, J. Li, Biochar-based nano-composites for the decontamination of wastewater: a review, Bioresour. Technol., 212 (2016) 318–333.
  17. D. Borah, S. Satokawa, S. Kato, T. Kojima, Surface-modified carbon black for As(V) removal, J. Colloid Interface Sci., 319 (2008) 53–62.
  18. J.W. Kim, J.Y. Song, S.-M. Lee, J.H. Jung, Application of ironmodified biochar for arsenite removal and toxicity reduction, J. Ind. Eng. Chem., 80 (2019) 17–22.
  19. K.Z. Benis, A.M. Damuchali, J. Soltan, K.N. McPhedran, Treatment of aqueous arsenic – a review of biochar modification methods, Sci. Total Environ., 739 (2020) 139750, https://doi. org/10.1016/j.scitotenv.2020.139750.
  20. C.M. Navarathna, A.G. Karunanayake, S.R. Gunatilake, C.U. Pittman Jr., F. Perez, D. Mohan, T. Mlsna, Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar, J. Environ. Manage., 250 (2019) 109429, https://doi.org/10.1016/j.jenvman.2019.109429.
  21. A. El Hanandeh, R.A. Abu-Zurayk, I. Hamadneh, A.H. Al-Dujaili, Characterization of biochar prepared from slow pyrolysis of Jordanian olive oil processing solid waste and adsorption efficiency of Hg2+ ions in aqueous solutions, Water Sci. Technol., 74 (2016) 1899–1910.
  22. J.-Q. Jiang, S.M. Ashekuzzaman, J.S.J. Hargreaves, A.R. McFarlane, A.B.M. Badruzzaman, M.H. Tarek, Removal of arsenic(III) from groundwater applying a reusable Mg-Fe-Cl layered double hydroxide, J. Chem. Technol. Biotechnol., 90 (2015) 1160–1166.
  23. C.H. Chia, B. Gong, S.D. Joseph, C.E. Marjo, P. Munroe, A.M. Rich, Imaging of mineral-enriched biochar by FTIR, Raman and SEM–EDX, Vib. Spectrosc., 62 (2012) 248–257.
  24. P.C. Nagajyothi, P. Muthuraman, T.V.M. Sreekanth, D.H. Kim, J. Shim, Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells, Arabian J. Chem., 10 (2017) 215–225.
  25. H.P. Yang, R. Yan, H.P. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007) 1781–1788.
  26. S.X. Tan, W.J. Zou, F.P. Jiang, S.Z. Tan, Y.L. Liu, D.S. Yuan, Facile fabrication of copper-supported ordered mesoporous carbon for antibacterial behavior, Mater. Lett., 64 (2010) 2163–2166.
  27. A.D. Igalavithana, Y.S. Ok, N.K. Niazi, M. Rizwan, M.I. Al-Wabel, A.R.A. Usman, D.H. Moon, S.S. Lee, Effect of corn residue biochar on the hydraulic properties of sandy loam soil, Sustainability, 9 (2017) 266, https://doi.org/10.3390/ su9020266.
  28. M. Nasrollahzadeh, M. Maham, S. Mohammad Sajadi, Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol, J. Colloid Interface Sci., 455 (2015) 245–253.
  29. S.N. do Carmo Ramos, A.L.P. Xavier, F.S. Teodoro, L.F. Gil, L.V.A. Gurgel, Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: mono- and multicomponent adsorption in batch mode, Ind. Crops Prod., 79 (2016) 116–130.
  30. M.B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, M.F. Chen, Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater, Bioresour. Technol., 214 (2016) 836–851.
  31. B. Liang, J. Lehmann, D. Solomon, J. Kinyangi, J. Grossman, B. O’Neill, J.O. Skjemstad, J. Thies, F.J. Luizão, J. Petersen, E.G. Neves, Black carbon increases cation exchange capacity in soils, Soil Sci. Soc. Am. J., 70 (2006) 1719–1730.
  32. M. Ishaq, S. Sultan, I. Ahmad, H. Ullah, M. Yaseen, A. Amir, Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent, J. Saudi Chem. Soc., 21 (2017) 143–151.
  33. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens Handlingar, 24 (1898) 1–39.
  34. Y.-S. Ho, Review of second-order models for adsorption systems, J. Hazard. Mater., 36 (2006) 681–689.
  35. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  36. N.A.S. Mohammed, R.A. Abu-Zurayk, I. Hamadneh, A.H. Al-Dujaili, Phenol adsorption on biochar prepared from the pine fruit shells: equilibrium, kinetic and thermodynamics studies, J. Environ. Manage., 226 (2018) 377–385.
  37. G. Yang, H.L. Chen, H.D. Qin, Y.J. Feng, Amination of activated carbon for enhancing phenol adsorption: effect of nitrogencontaining functional groups, Appl. Surf. Sci., 293 (2014) 299–305.
  38. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  39. H.M.F. Freundlich, About the adsorption, Zeitschrift für Physikalische Chemie, 57 (1906) 385–470.
  40. M.M. Dubinin, E.D. Zaverina, L.V. Radushkevich, Sorption and structure of active carbon I. Adsorption of organic vapors, J. Phys. Chem. A, 21 (1947) 1351–1362.
  41. D. Hsu, C.Y. Lu, T.R. Pang, Y.P. Wang, G.H. Wang, Adsorption of ammonium nitrogen from aqueous solution on chemically activated biochar prepared from sorghum distillers grain, Appl. Sci. (Switzerland), 9 (2019) 5249, https://doi.org/10.3390/ app9235249.
  42. H. Chen, J. Zhao, G.L. Dai, J.Y. Wu, H. Yan, Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves, Desalination, 262 (2010) 174–182.
  43. Z.H. Yu, L. Zhou, Y.F. Huang, Z.G. Song, W.W. Qiu, Effects of a manganese oxide-modified biochar composite on adsorption of arsenic in red soil, J. Environ. Manage., 163 (2015) 155–162.
  44. H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.