References

  1. M. Balasubramanian, Climate change, famine, and low-income communities challenge Sustainable Development Goals, Lancet Planet. Health, 2 (2018) e421–e422.
  2. N. Ramankutty, Z. Mehrabi, K. Waha, L. Jarvis, C. Kremen, M. Herrero, L.H. Rieseberg, Trends in global agricultural land use: implications for environmental health and food security, Annu. Rev. Plant Biol., 69 (2018) 789–815.
  3. S.A. Khan, M. Suleman, M. Asad, Assessment of pollution load in marble wastewater in Khairabad, District Nowshera, Khyber Pukhtunkhwa, Pakistan, Int. J. Econ. Environ. Geol., 72 (2019) 232–243.
  4. M.S. Achary, K.K. Satpathy, S. Panigrahi, A.K. Mohanty, R.K. Padhi, S. Biswas, R.C. Panigrahy, Concentration of heavy metals in the food chain components of the nearshore coastal waters of Kalpakkam, southeast coast of India, Food Control, 72 (2017) 232–243.
  5. B. de Campos Ventura-Camargo, M.A. Marin-Morales, Azo dyes: characterization and toxicity-a review, TLIST, 2 (2013) 85–103.
  6. R.D. Saini, Synthetic textile dyes: constitution, dying process and environmental impacts, CL, Asian J. Res. Chem. (AJRC), 70 (2018) 5–30.
  7. P.S. Kumar, G.J. Joshiba, Environmental and Health Effects Due to the Usage of Wastewater, In Life Cycle Assessment of Wastewater Treatment, CRC Press, United States, 2018, pp. 1–21.
  8. S. Mishra, R.N. Bharagava, N. More, A. Yadav, S. Zainith, S. Mani, P. Chowdhary, Heavy Metal Contamination: An Alarming Threat to Environment and Human Health, In Environmental Biotechnology: For Sustainable Future, Springer, Singapore, 2019, pp. 103–125.
  9. J. Nawab, S. Khan, S. Ali, H. Sher, Z. Rahman, K. Khan, A. Ahmad, Health risk assessment of heavy metals and bacterial contamination in drinking water sources: a case study of Malakand Agency, Pakistan, Environ. Monit. Assess., 188 (2016) 286.
  10. H.Y. Hu, Y. Du, Q.Y. Wu, X. Zhao, X. Tang, Z. Chen, Differences in dissolved organic matter between reclaimed water source and drinking water source, Sci. Total Environ., 551 (2016) 133–142.
  11. N.J. Ashbolt, Microbial contamination of drinking water and human health from community water systems, Curr. Environ. Health Rep., 2 (2015) 95–106.
  12. M.K. Daud, M. Nafees, S. Ali, M. Rizwan, R. A. Bajwa, M.B. Shakoor, I. Malook, Drinking water quality status and contamination in Pakistan, BioMed Res. Int., 2017 (2017) 7908183 (1–18).
  13. Food and Agriculture Organization of the United Nations, The State of World Fisheries and Aquaculture 2018– Meeting the Sustainable Development Goals, FAO, United States, 2018.
  14. S. Sankar, S. Sekar, R. Mohan, S. Rani, J. Sundaraseelan, T.P. Sastry, Preparation and partial characterization of collagen sheet from fish (Lates calcarifer) scales, Int. J. Biol. Macromol., 42 (2008) 6–9.
  15. J. Kozlowska, A. Sionkowska, J. Skopinska-Wisniewska, K. Piechowicz, Northern pike (Esox lucius) collagen: extraction, characterization and potential application, Int. J. Biol. Macromol., 81 (2015) 220–227.
  16. S. Sancilio, M. Gallorini, C. Di Nisio, E. Marsich, R. Di Pietro, H. Schweikl, A. Cataldi, Alginate/hydroxyapatite-based nanocomposite scaffolds for bone tissue engineering improve dental pulp biomineralization and differentiation, Stem Cells Int., 2018.
  17. S. Sathiskumar, S. Vanaraj, D. Sabarinathan, K. Preethi, Evaluation of antibacterial and antibiofilm activity of synthesized zinc-hydroxyapatite biocomposites from Labeo rohita fish scale waste, Mater. Res. Express, 5 (2018) 025407.
  18. L. Berzina-Cimdina, N. Borodajenko, Research of calcium phosphates using Fourier transform infrared spectroscopy, IR Mater. Sci. Eng. Technol., 12 (2012) 251–263.
  19. S.L. Pandharipande, S.S. Sondawale, Review on synthesis of hydroxyapatite and its bio-composites, Int. J. Sci. Technol. Res., 5 (2016) 3410–3416.
  20. M. Sutha, K. Sowndarya, M. Chandran, D. Yuvaraj, B. Bharathiraja, R.P. Kumar, Synthesis of Value-Added Biomimetic Material of Hydroxyapatite Using Aqueous Calcareous Fish Wastes, In Waste to Wealth, Springer, Singapore, 2018, pp. 59–64.
  21. A. Pal, K. Hadagalli, P. Bhat, V. Goel, S. Mandal, Hydroxyapatite—a promising sunscreen filter, J. Aust. Ceram. Soc., 56 (2019) 1–7.
  22. S. Campisi, M.G. Galloni, F. Bossola, A. Gervasini, Comparative performance of copper and iron functionalized hydroxyapatite catalysts in NH3-SCR, Catal. Commun., 123 (2019) 79–85.
  23. Y. Li, L.L. Chen, X.X. Lian, J.W. Zhu, Preparation and characterisation of ZnO/HAP bioceramics with excellent antibacterial property, Mater. Technol., 34 (2019) 415–422.
  24. N. Ma, X. Fan, X. Quan, Y. Zhang, Ag–TiO2/HAP/Al2O3 bioceramic composite membrane: fabrication, characterization and bactericidal activity, J. Membr. Sci., 336 (2009) 109–117.
  25. Y. Li, H. Zhou, G. Zhu, C. Shao, H. Pan, X. Xu, R. Tang, Highly efficient multifunctional Ag3PO4 loaded hydroxyapatite nanowires for water treatment, J. Hazard. Mater., 299 (2015) 379–387.
  26. L. Dong, Z. Zhu, Y. Qiu, J. Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent, Chem. Eng. J., 165 (2010) 827–834.
  27. M. Mahdavi-Roshan, M. Ebrahimi, A. Ebrahimi, Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women, Clin. Cases Miner. Bone Metab., 12 (2015) 18.
  28. O.H. Ojeda-Niño, C. Blanco, C.E. Daza, High temperature CO2 capture of hydroxyapatite extracted from tilapia scales, Univ. Sci., 22 (2017) 215–236.
  29. S. Sathiskumar, S. Vanaraj, D. Sabarinathan, S. Bharath, G. Sivarasan, S. Arulmani, V.K. Ponnusamy, Green synthesis of biocompatible nanostructured hydroxyapatite from Cirrhinus mrigala fish scale–a biowaste to biomaterial, Ceram. Int., 45 (2019) 7804–7810.
  30. N. Mustafa, M.H.I. Ibrahim, R. Asmawi, A.M. Amin, Hydroxyapatite Extracted from Waste Fish Bones and Scales via Calcination Method, In Applied Mechanics Materials, Vol. 773, 2015, pp. 287–290.
  31. A.T. Adesoji, J.P. Onuh, J. Bagu, S.A. Itohan, Prevalence and antibiogram study of Staphylococcus aureus isolated from clinical and selected drinking water of Dutsin-Ma, Katsina state, Nigeria, Afr. Health Sci., 19 (2019) 1385–1392.
  32. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 3039817 (1–11).
  33. S. Zulfiqar, U. Rafique, M.J. Akhtar, Removal of pirimicarb from agricultural wastewater using cellulose acetate–modified ionic liquid membrane, Environ. Sci. Pollut. Res., 26 (2019) 15795–15802.
  34. S.E. Abd Elhafez, H.A. Hamad, A.A. Zaatout, G.F. Malash, Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis, Environ. Sci. Pollut. Res., 24 (2017) 1397–1415.
  35. H. Shokry, H. Hamad, Effect of superparamagnetic nanoparticles on the physicochemical properties of nano hydroxyapatite for groundwater treatment: adsorption mechanism of Fe(II) and Mn (II), RSC Adv., 6 (2016) 82244–82259.
  36. H. Gheisari, E. Karamian, M. Abdellahi, A novel hydroxyapatite–hardystonite nanocomposite ceramic, Ceram. Int., 41 (2015) 5967–5975.
  37. M. Manoj, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Core–shell hydroxyapatite/Mg nanostructures: surfactant free facile synthesis, characterization and their in vitro cell viability studies against leukaemia cancer cells (K562), RSC Adv., 5 (2015) 48705–48711.
  38. S. Kuśnieruk, J. Wojnarowicz, A. Chodara, T. Chudoba, S. Gierlotka, W. Lojkowski, Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles, BJNANO, 7 (2016) 1586–1601.
  39. M. Chahkandi, Mechanism of Congo red adsorption on new sol-gel-derived hydroxyapatite nanoparticle, Mater. Chem. Phys., 202 (2017) 340–351.
  40. A. Fihri, C. Len, R.S. Varma, A. Solhy, Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis, Coord. Chem. Rev., 347 (2017) 48–76.
  41. M. Markovic, B.O. Fowler, M.S. Tung, Preparation and comprehensive characterization of a calcium hydroxyapatite reference material, J. Res. Natl. Inst. Stand. Technol., 109 (2004) 553.
  42. T.M. Yurieva, L.M. Plyasova, V.I. Zaikovskii, T.P. Minyukova, A. Bliek, J.C. van den Heuvel, E.D. Batyrev, In situ XRD and HRTEM studies on the evolution of the Cu/ZnO methanol synthesis catalyst during its reduction and re-oxidation, Phys. Chem. Chem. Phys., 6 (2004) 4522–4526.
  43. Y. Hou, H. Kondoh, T. Ohta, S. Gao, Size-controlled synthesis of nickel nanoparticles, Appl. Surf. Sci., 241 (2005) 218–222.
  44. M.R. Abukhadra, M.A. Sayed, A.M. Rabie, S. A. Ahmed, Surface decoration of diatomite by Ni/NiO nanoparticles as hybrid composite of enhanced adsorption properties for malachite green dye and hexavalent chromium, Colloids Surf., A, 577 (2019) 583–593.
  45. B. Gayathri, N. Muthukumarasamy, D. Velauthapillai, S.B. Santhosh, Magnesium incorporated hydroxyapatite nanoparticles: preparation, characterization, antibacterial and larvicidal activity, Arab. J. Chem., 11 (2018) 645–654.
  46. Z. Rahman, V.P. Singh, The relative impact of toxic heavy metals (THMs)(arsenic (As), cadmium (Cd), chromium (Cr) (VI), mercury (Hg), and lead (Pb)) on the total environment: an overview, Environ. Monit. Assess., 191 (2019) 419.
  47. M.T. Hayat, M. Nauman, N. Nazir, S. Ali, N. Bangash, Environmental Hazards of Cadmium: Past, Present, and Future, In Cadmium Toxicity and Tolerance in Plants, Academic Press, 2019, pp. 163–183.
  48. R.E. Pătescu, L.T. Busuioc, G. Nechifor, C.M. Simonescu, C. Deleanu, Applicability of chitosan/hydroxyapatite composites for adsorptive removal of lead, copper, zinc and nickel from synthetic aqueous solutions, UPB Sci. Bull. Ser. B, 79 (2017) 119–134.
  49. A.S. Sartape, A.M. Mandhare, V.V. Jadhav, P.D. Raut, M.A. Anuse, S.S. Kolekar, Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low-cost adsorbent, Arab. J. Chem., 10 (2017) S3229–S3238.
  50. U. Shanker, M. Rani, V. Jassal, Degradation of hazardous organic dyes in water by nanomaterials, Environ. Chem. Lett., 5 (2017) 623–642.
  51. A.M. Al-Sabagh, Y.M. Moustafa, A. Hamdy, H.M. Killa, R.T.M.R.E. Ghanem, Morsi, Preparation and characterization of sulfonated polystyrene/magnetite nanocomposites for organic dye adsorption, Egypt. J. Pet., 27 (2018) 403–413.
  52. V. Stanić, S. Dimitrijević, J. Antić-Stanković, M. Mitrić, B. Jokić, I.B. Plećaš, S. Raičević, Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nano powders, Appl. Surf. Sci., 256 (2010) 6083–6089.
  53. P. Zhang, Adsorption and Desorption Isotherms, KE Group, Thailand, 2016.
  54. A.A. El-Zahhar, N.S. Awwad, Removal of malachite green dye from aqueous solutions using organically modified hydroxyapatite, J. Environ. Chem. Eng., 4 (2016) 633–638.
  55. S.D. Khattri, M.K. Singh, Removal of malachite green from dye wastewater using neem sawdust by adsorption, J. Hazard. Mater. 167 (2009) 1089–1094.
  56. K. Parveen, U. Rafique, S.Z. Safi, M.A. Ashraf, A novel method for synthesis of functionalized hybrids and their application for wastewater treatment, Desal. Water Treat., 57 (2016) 161–170.
  57. K. Sangeetha, G. Vidhya, G. Vasugi, E.K. Girija, Lead and cadmium removal from single and binary metal ion solution by novel hydroxyapatite/alginate/gelatin nanocomposites, J. Environ. Chem. Eng., 6 (2018) 1118–1126.
  58. D. Robati, Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube, JNSC, 3 (2013) 55.