References
   -  B. Li, J. Ma, L. Zhou, Y. Qiu, Magnetic microsphere to remove
	   tetracycline from water: adsorption, H2O2 oxidation and
    regeneration, Chem. Eng. J., 330 (2017) 191–201. 
-  M. Malakootian, S.N. Asadzadeh, Oxidative removal of
    tetracycline by sono Fenton-like oxidation process in aqueous
    media, Desal. Water Treat., 193 (2020) 302–401. 
-  M. Malakootian, S.N. Asadzadeh, Removal of tetracycline
    from aqueous solution by ultrasound and ultraviolet enhanced
    persulfate oxidation, Desal. Water Treat., 197 (2020) 191–199. 
-  R. Daghrir, P. Drogui, Tetracycline antibiotics in the
    environment: a review, Environ. Chem. Lett., 11 (2013) 209–227. 
-  E.S. Elmolla, M. Chaudhuri, Degradation of amoxicillin,
    ampicillin and cloxacillin antibiotics in aqueous solution by the
    UV/ZnO photocatalytic process, J. Hazard. Mater., 173 (2010)
    445–449. 
-  V. Homem, L. Santos, Degradation and removal methods
    of antibiotics from aqueous matrices–a review, J. Environ.
    Manage., 92 (2011) 2304–2347. 
-  M.B. Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Adsorptive removal
    of antibiotics from water and wastewater: progress and
    challenges, Sci. Total Environ., 532 (2015) 112–126. 
-  I.R. Bautitz, R.F.P. Nogueira, Degradation of tetracycline by
    photo-Fenton process—solar irradiation and matrix effects,
    J. Photochem. Photobiol., A, 187 (2007) 33–39. 
-  J.J. López-Peñalver, M. Sánchez-Polo, C.V. Gómez-Pacheco,
    J. Rivera-Utrilla, Photodegradation of tetracyclines in aqueous
    solution by using UV and UV/H2O2 oxidation processes,
    J. Chem. Technol. Biotechnol., 85 (2010) 1325–1333. 
-  H.M. Lwin, W. Zhan, S. Song, F. Jia, J. Zhou, Visible light
    photocatalytic degradation pathway of tetracycline
    hydrochloride with cubic structured ZnO/SnO2 heterojunction
    nanocatalyst, Chem. Phys. Lett., 736 (2019) 136806, https://doi.org/10.1016/j.cplett.2019.136806. 
-  C.F. Couto, L.C. Lange, M.C.S. Amaral, A critical review
    on membrane separation processes applied to remove
    pharmaceutically active compounds from water and
    wastewater, J. Water Process Eng., 26 (2018) 156–175. 
-  Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su,
    Adsorption and removal of tetracycline antibiotics from
    aqueous solution by graphene oxide, J. Colloid Interface Sci.,
    368 (2012) 540–546. 
-  P.-H. Chang, Z. Li, T.-L. Yu, S. Munkhbayer, T.-H. Kuo,
    Y.-C. Hung, J.-S. Jean, K.-H. Lin, Sorptive removal of tetracycline
    from water by palygorskite, J. Hazard. Mater., 165 (2009)
    148–155. 
-  D.I. Massé, N.M.C. Saady, Y. Gilbert, Potential of biological
    processes to eliminate antibiotics in livestock manure: an
    overview, Animals, 4 (2014) 146–163. 
-  A.K. Biń, S. Sobera-Madej, Comparison of the advanced
    oxidation processes (UV, UV/H2O2 and O3) for the removal of
    antibiotic substances during wastewater treatment, Ozone Sci.
    Eng., 34 (2012) 136–139. 
-  R.D.C. Soltani, M. Mashayekhi, M. Naderi, G. Boczkaj, S. Jorfi,
    M. Safari, Sonocatalytic degradation of tetracycline antibiotic
    using zinc oxide nanostructures loaded on nano-cellulose
    from waste straw as nanosonocatalyst, Ultrason. Sonochem.,
    55 (2019) 117–124. 
-  P. Liu, H. Zhang, Y. Feng, F. Yang, J. Zhang, Removal of trace
    antibiotics from wastewater: a systematic study of nanofiltration
    combined with ozone-based advanced oxidation processes,
    Chem. Eng. J., 240 (2014) 211–220. 
-  M. Ahmadi, H.R. Motlagh, N. Jaafarzadeh, A. Mostoufi,
    R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic
    degradation of tetracycline and real pharmaceutical wastewater
    using MWCNT/TiO2 nano-composite, J. Environ. Manage.,
    186 (2017) 55–63. 
-  M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual
    pharmaceuticals from aqueous systems by advanced oxidation
    processes, Environ. Int., 35 (2009) 402–417. 
-  E.A. Serna-Galvis, J. Silva-Agredo, A.L. Giraldo-Aguirre,
    O.A. Flórez-Acosta, R.A. Torres-Palma, High frequency
    ultrasound as a selective advanced oxidation process to remove
    penicillinic antibiotics and eliminate its antimicrobial activity
    from water, Ultrason. Sonochem., 31 (2016) 276–283. 
-  J. Jeong, W. Song, W.J. Cooper, J. Jung, J. Greaves, Degradation
    of tetracycline antibiotics: mechanisms and kinetic studies
    for advanced oxidation/reduction processes, Chemosphere,
    78 (2010) 533–540. 
-  Y. Zhang, Y. Zhuang, J. Geng, H. Ren, K. Xu, L. Ding, Reduction
    of antibiotic resistance genes in municipal wastewater effluent
    by advanced oxidation processes, Sci. Total Environ., 550 (2016)
    184–191. 
-  G. Lofrano, R. Pedrazzani, G. Libralato, M. Carotenuto,
    Advanced oxidation processes for antibiotics removal: a review,
    Curr. Org. Chem., 21 (2017) 1054–1067. 
-  J. Cao, L. Lai, B. Lai, G. Yao, X. Chen, L. Song, Degradation of
    tetracycline by peroxymonosulfate activated with zero-valent
    iron: performance, intermediates, toxicity and mechanism,
    Chem. Eng. J., 364 (2019) 45–56. 
-  Q. Yang, X. Yang, Y. Yan, C. Sun, H. Wu, J. He, D. Wang,
    Heterogeneous activation of peroxymonosulfate by different
    ferromanganese oxides for tetracycline degradation: Structure
    dependence and catalytic mechanism, Chem. Eng. J., 348 (2018)
    263–270. 
-  Y. Liu, Y. Wang, Q. Wang, J. Pan, J. Zhang, Simultaneous
    removal of NO and SO2 using vacuum ultraviolet light (VUV)/
    heat/peroxymonosulfate (PMS), Chemosphere, 190 (2018)
    431–441. 
-  J. Sharma, I.M. Mishra, D.D. Dionysiou, V. Kumar, Oxidative
    removal of Bisphenol A by UV-C/peroxymonosulfate (PMS):
    kinetics, influence of co-existing chemicals and degradation
    pathway, Chem. Eng. J., 276 (2015) 193–204. 
-  B.-T. Zhang, W. Xiang, X. Jiang, Y. Zhang, Y. Teng, Oxidation of
    dyes by alkaline-activated peroxymonosulfate, J. Environ. Eng.,
    142 (2016) 4016003. 
-  R. Yin, W. Guo, H. Wang, J. Du, X. Zhou, Q. Wu, H. Zheng,
    J. Chang, N. Ren, Enhanced peroxymonosulfate activation
    for sulfamethazine degradation by ultrasound irradiation:
    performances and mechanisms, Chem. Eng. J., 335 (2018)
    145–153. 
-  T. Zhang, H. Zhu, J.-P. Croue, Production of sulfate radical
    from peroxymonosulfate induced by a magnetically separable
    CuFe2O4 spinel in water: efficiency, stability, and mechanism,
    Environ. Sci. Technol., 47 (2013) 2784–2791. 
-  J. Du, J. Bao, Y. Liu, H. Ling, H. Zheng, S.H. Kim,
    D.D. Dionysiou, Efficient activation of peroxymonosulfate by
    magnetic Mn-MGO for degradation of bisphenol A, J. Hazard.
    Mater., 320 (2016) 150–159. 
-  F. Ghanbari, M. Moradi, Application of peroxymonosulfate
    and its activation methods for degradation of environmental
    organic pollutants, Chem. Eng. J., 310 (2017) 41–62. 
-  F. Tamaddon, A. Nasiri, G. Yazdanpanah, Photocatalytic
    degradation of ciprofloxacin using CuFe2O4@methyl cellulose
    based magnetic nanobiocomposite, MethodsX, 7 (2020) 100764,
    doi: 10.1016/j.mex.2019.12.005. 
-  M. Malakootian, M. Khatami, H. Mahdizadeh, A. Nasiri,
    M. Amiri Gharaghani, A study on the photocatalytic degradation
    of p-Nitroaniline on glass plates by thermo-immobilized
    ZnO nanoparticle, Inorg. Nano-Metal Chem., 50 (2020) 124–135. 
-  A. Nasiri, F. Tamaddon, M.H. Mosslemin, M. Faraji, A microwave
    assisted method to synthesize nanoCoFe2O4@methyl cellulose
    as a novel metal-organic framework for antibiotic degradation,
    MethodsX, 6 (2019) 1557–1563. 
-  M. Malakootian, A. Nasiri, A. Asadipour, M. Faraji, E. Kargar,
    A facile and green method for synthesis of ZnFe2O4@CMC as
    a new magnetic nanophotocatalyst for ciprofloxacin removal
    from aqueous media, MethodsX, 6 (2019) 1575–1580. 
-  F. Tamaddon, M.H. Mosslemin, A. Asadipour, M.A. Gharaghani,
    A. Nasiri, Microwave-assisted preparation of ZnFe2O4@methyl cellulose as a new nano-biomagnetic photocatalyst for
    photodegradation of metronidazole, Int. J. Biol. Macromol.,
    154 (2020) 1036–1049. 
-  M. Malakootian, A. Nasiri, A.N. Alibeigi, H. Mahdizadeh,
    M.A. Gharaghani, Synthesis and stabilization of ZnO nanoparticles
    on a glass plate to study the removal efficiency of acid
    red 18 by hybrid advanced oxidation process (Ultraviolet/ZnO/ultrasonic), Des. Water Treat., 170 (2019) 325–336. 
-  M. Malakootian, A. Smith Jr., M.A. Gharaghani, H. Mahdizadeh,
    A. Nasiri, G. Yazdanpanah, Decoloration of textile Acid Red
    18 dye by hybrid UV/COP advanced oxidation process using
    ZnO as a catalyst immobilized on a stone surface, Des.
    Water Treat., 182 (2020) 385–394. 
-  H. Mahdizadeh, A. Nasiri, M.A. Gharaghani, G. Yazdanpanah,
    Hybrid UV/COP advanced oxidation process using ZnO as a
    catalyst immobilized on a stone surface for degradation of acid
    red 18 dye, MethodsX, 7 (2020) 101118, https://doi.org/10.1016/j.
    mex.2020.101118. 
-  S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo,
    M. Palanichamy, V. Murugesan, Solar photocatalytic degradation
    of azo dye: comparison of photocatalytic efficiency of
    ZnO and TiO2, Sol. Energy Mater. Sol. Cells, 77 (2003) 65–82. 
-  S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of
    model textile dyes in wastewater using ZnO as semiconductor
    catalyst, J. Hazard. Mater., 112 (2004) 269–278. 
-  S. Chen, Y. Liu, Study on the photocatalytic degradation of
    glyphosate by TiO2 photocatalyst, Chemosphere, 67 (2007)
    1010–1017. 
-  A. Samad, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco,
    Photocatalytic oxidation and simultaneous removal of arsenite
    with CuO/ZnO photocatalyst, J. Photochem. Photobiol., A,
    325 (2016) 97–103. 
-  Y. Wu, M. Xing, J. Zhang, F. Chen, Effective visible light-active
    boron and carbon modified TiO2 photocatalyst for degradation
    of organic pollutant, Appl. Catal., B, 97 (2010) 182–189. 
-  N. Chandel, K. Sharma, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, V.K. Thakur, P. Singh, Magnetically separable
    ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto
    nitrogen doped graphene for photocatalytic degradation of
    toxic dyes, Arabian J. Chem., 13 (2020) 4324–4340. 
-  L. Fernández, M. Gamallo, M.A. González-Gómez, C. Vázquez-Vázquez, J. Rivas, M. Pintado, M.T. Moreira, Insight into
    antibiotics removal: exploring the photocatalytic performance
    of a Fe3O4/ZnO nanocomposite in a novel magnetic sequential
    batch reactor, J. Environ. Manage., 237 (2019) 595–608. 
-  M. Malakootian, H. Mahdizadeh, A. Dehdarirad, M. Amiri
    Gharghani, Photocatalytic ozonation degradation of ciprofloxacin
    using ZnO nanoparticles immobilized on the surface
    of stones, J. Dispersion Sci. Technol., 40 (2019) 846–854. 
-  M.K. Debanath, S. Karmakar, Study of blueshift of optical
    band gap in zinc oxide (ZnO) nanoparticles prepared by
    low-temperature wet chemical method, Mater. Lett., 111 (2013)
    116–119. 
-  S. Narendhran, R. Sivaraj, Biogenic ZnO nanoparticles
    synthesized using L. aculeata leaf extract and their antifungal
    activity against plant fungal pathogens, Bull. Mater. Sci.,
    39 (2016) 1–5. 
-  S. Ahmed, S.A. Chaudhry, S. Ikram, A review on biogenic
    synthesis of ZnO nanoparticles using plant extracts and
    microbes: a prospect towards green chemistry, J. Photochem.
    Photobiol., B, 166 (2017) 272–284. 
-  H. Wang, H. Yao, J. Pei, F. Liu, D. Li, Photodegradation of
    tetracycline antibiotics in aqueous solution by UV/ZnO, Des.
    Water Treat., 57 (2016) 19981–19987. 
-  V.H.T. Thi, B.-K. Lee, Great improvement on tetracycline
    removal using ZnO rod-activated carbon fiber composite
    prepared with a facile microwave method, J. Hazard. Mater.,
    324 (2017) 329–339. 
-  Y.-H. Guan, J. Ma, X.-C. Li, J.-Y. Fang, L.-W. Chen, Influence of
    pH on the formation of sulfate and hydroxyl radicals in the UV/
    peroxymonosulfate system, Environ. Sci. Technol., 45 (2011)
    9308–9314. 
-  Y. Chen, C. Hu, J. Qu, M. Yang, Photodegradation of tetracycline
    and formation of reactive oxygen species in aqueous
    tetracycline solution under simulated sunlight irradiation,
    J. Photochem. Photobiol., A, 197 (2008) 81–87. 
-  K.A. Loftin, C.D. Adams, M.T. Meyer, R. Surampalli, Effects
    of ionic strength, temperature, and pH on degradation of
    selected antibiotics, J. Environ. Qual., 37 (2008) 378–386. 
-  C. Zhao, M. Pelaez, X. Duan, H. Deng, K. O’Shea, D. Fatta-
    Kassinos, D.D. Dionysiou, Role of pH on photolytic and photocatalytic
    degradation of antibiotic oxytetracycline in aqueous
    solution under visible/solar light: kinetics and mechanism
    studies, Appl. Catal., B, 134 (2013) 83–92. 
-  A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal
    of pharmaceuticals and endocrine disrupting compounds
    from water by zinc oxide-based photocatalytic degradation:
    a review, Sustainable Cities Soc., 27 (2016) 407–418. 
-  L. Yu, Z. Ye, J. Li, C. Ma, C. Ma, X. Liu, H. Wang, L. Tang,
    P. Huo, Y. Yan, Photocatalytic degradation mechanism of
    tetracycline by Ag@ZnO/C core–shell plasmonic photocatalyst
    under visible light, Nano, 13 (2018) 1850065, doi: 10.1142/
    S1793292018500650. 
-  F. Guo, W. Shi, W. Guan, H. Huang, Y. Liu, Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven
    photocatalyst for tetracycline total degradation, Sep. Purif.
    Technol., 173 (2017) 295–303. 
-  J. Feng, L. Cheng, J. Zhang, O.K. Okoth, F. Chen, Preparation
    of BiVO4/ZnO composite film with enhanced visiblelight
    photoelectrocatalytic activity, Ceram. Int., 44 (2018)
    3672–3677. 
-  L. Hu, G. Zhang, M. Liu, Q. Wang, P. Wang, Optimization of the
    catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate
    activation for bisphenol A removal using response surface
    methodology, Chemosphere, 212 (2018) 152–161. 
-  Y. Ding, H. Tang, S. Zhang, S. Wang, H. Tang, Efficient
    degradation of carbamazepine by easily recyclable microscaled
    CuFeO2 mediated heterogeneous activation of peroxymonosulfate,
    J. Hazard. Mater., 317 (2016) 686–694. 
-  N.S. Shah, J.A. Khan, M. Sayed, Z.U.H. Khan, A.D. Rizwan,
    N. Muhammad, G. Boczkaj, B. Murtaza, M. Imran,
    H.M. Khan, Solar light driven degradation of norfloxacin using
	  as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition
	  of HSO5−: toxicities and degradation pathways investigation,
    Chem. Eng. J., 351 (2018) 841–855. 
-  X. Chen, J. Zhou, T. Zhang, L. Ding, Enhanced degradation of
    tetracycline hydrochloride using photocatalysis and sulfate
    radical-based oxidation processes by Co/BiVO4 composites,
    J. Water Process Eng., 32 (2019) 100918, doi: 10.1016/j.
    jwpe.2019.100918. 
-  Y. Pang, L. Kong, H. Lei, D. Chen, G. Yuvaraja, Combined
    microwave-induced and photocatalytic oxidation using
    zinc ferrite catalyst for efficient degradation of tetracycline
    hydrochloride in aqueous solution, J. Taiwan Inst. Chem.
    Eng., 93 (2018) 397–404. 
-  V.M. Mboula, V. Hequet, Y. Gru, R. Colin, Y. Andres,
    Assessment of the efficiency of photocatalysis on tetracycline
    biodegradation, J. Hazard. Mater., 209 (2012) 355–364. 
-  E.F.C. Chaúque, J.N. Zvimba, J.C. Ngila, N. Musee, Stability
    studies of commercial ZnO engineered nanoparticles in
    domestic wastewater, Phys. Chem. Earth, Parts A/B/C, 67 (2014)
    140–144. 
-  V.C. Srivastava, Photocatalytic oxidation of dye bearing
    wastewater by iron doped zinc oxide, Ind. Eng. Chem. Res.,
    52 (2013) 17790–17799. 
-  F. Liu, P. Yi, X. Wang, H. Gao, H. Zhang, Degradation of Acid
    Orange 7 by an ultrasound/ZnO-GAC/persulfate process,
    Sep. Purif. Technol., 194 (2018) 181–187. 
-  F. Meng, Y. Liu, J. Wang, X. Tan, H. Sun, S. Liu, S. Wang,
    Temperature dependent photocatalysis of g-C3N4, TiO2 and
    ZnO: differences in photoactive mechanism, J. Colloid Interface
    Sci., 532 (2018) 321–330. 
-  R.A. Palominos, M.A. Mondaca, A. Giraldo, G. Peñuela,
    M. Pérez-Moya, H.D. Mansilla, Photocatalytic oxidation of the
    antibiotic tetracycline on TiO2 and ZnO suspensions, Catal.
    Today, 144 (2009) 100–105. 
-  Y. Qian, G. Xue, J. Chen, J. Luo, X. Zhou, P. Gao, Q. Wang,
    Oxidation of cefalexin by thermally activated persulfate:
    kinetics, products, and antibacterial activity change, J. Hazard.
    Mater., 354 (2018) 153–160. 
-  R. Xie, J. Ji, K. Guo, D. Lei, Q. Fan, D.Y.C. Leung, H. Huang, Wet
    scrubber coupled with UV/PMS process for efficient removal
    of gaseous VOCs: roles of sulfate and hydroxyl radicals,
    Chem. Eng. J., 356 (2019) 632–640. 
-  M. Mahdi-Ahmed, S. Chiron, Ciprofloxacin oxidation by
    UV-C activated peroxymonosulfate in wastewater, J. Hazard.
    Mater., 265 (2014) 41–46. 
-  H. Sun, S. Liu, S. Liu, S. Wang, A comparative study of reduced
    graphene oxide modified TiO2, ZnO and Ta2O5 in visible light
    photocatalytic/photochemical oxidation of methylene blue,
    Appl. Catal., B, 146 (2014) 162–168. 
-  P.R. Shukla, S. Wang, H.M. Ang, M.O. Tadé, Photocatalytic
    oxidation of phenolic compounds using zinc oxide and
    sulphate radicals under artificial solar light, Sep. Purif. Technol.,
    70 (2010) 338–344. 
-  P. Shukla, I. Fatimah, S. Wang, H.M. Ang, M.O. Tadé,
    Photocatalytic generation of sulphate and hydroxyl radicals
    using zinc oxide under low-power UV to oxidise phenolic
    contaminants in wastewater, Catal. Today, 157 (2010) 410–414. 
-  A. Shad, J. Chen, R. Qu, A.A. Dar, M. Bin-Jumah, A.A. Allam,
    Z. Wang, Degradation of sulfadimethoxine in phosphate
    buffer solution by UV alone, UV/PMS and UV/H2O2: kinetics,
    degradation products, and reaction pathways, Chem. Eng. J.,
    398 (2020) 125357, doi: 10.1016/j.cej.2020.125357. 
-  L. Duan, B. Sun, M. Wei, S. Luo, F. Pan, A. Xu, X. Li, Catalytic
    degradation of Acid Orange 7 by manganese oxide octahedral
    molecular sieves with peroxymonosulfate under visible light
    irradiation, J. Hazard. Mater., 285 (2015) 356–365. 
-  J. Chen, J. Xu, T. Liu, Y. Qian, X. Zhou, S. Xiao, Y. Zhang, Selective
    oxidation of tetracyclines by peroxymonosulfate in livestock
    wastewater: kinetics and non-radical mechanism, J. Hazard.
    Mater., 386 (2020) 121656, doi: 10.1016/j.jhazmat.2019.121656. 
-  C. Wang, J. Jian, Feasibility of tetracycline wastewater
    degradation by enhanced sonolysis, J. Adv. Oxid. Technol.,
	  18 (2015) 39–46.