References
   -  T. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging
    pollutants in wastewater: a review of the literature, Int. J. Hyg.
    Environ. Health, 214 (2011) 442–448. 
-  J. Radjenović, M. Petrović, D. Barceló, Fate and distribution
    of pharmaceuticals in wastewater and sewage sludge of the
    conventional activated sludge (CAS) and advanced membrane
    bioreactor (MBR) treatment, Water Res., 43 (2009) 831–841. 
-  J. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García,
    G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as
    emerging contaminants and their removal from water. A
    review, Chemosphere, 93 (2013) 1268–1287. 
-  J.-M. Pépin, Impacts Écotoxicologiques de Certains Médicaments
    Dans L’environnement, Université de Sherbrooke,
    2006. 
-  K. Fent, A.A. Weston, D. Caminada, Ecotoxicology of
    human pharmaceuticals, Aquat.Toxicol., 76 (2006) 122–159. 
-  G.W. Aherne, J. English, V. Marks, The role of immunoassay
    in the analysis of microcontaminants in water samples,
    Ecotoxicol. Environ. Saf., 9 (1985) 79–83. 
-  K. Kümmerer, Éd., Pharmaceuticals in the Environment:
    Sources, Fate, Effects and Risks, 3rd ed., Springer-Verlag, Berlin,
    Heidelberg, 2008. 
-  M. Zupanc, T. Kosjek, M. Petkovšek, M. Dular, B. Kompare,
    B. Širok, Ž. Blažeka, E. Heath, Removal of pharmaceuticals
    from wastewater by biological processes, hydrodynamic
    cavitation and UV treatment, Ultrason. Sonochem., 20 (2013)
    1104–1112. 
-  A.F. Almomani, M. Shawaqfah, R.R. Bhosale, A. Kumar,
    Removal of emerging pharmaceuticals from wastewater by
    ozone-based advanced oxidation processes, Environ. Prog.
    Sustainable Energy, 35 (2016) 982–995. 
-  B.E. Benny Marie, B. Laura, V. Naddeo, V. Belgiorno, M. Daniel
    G. de Luna, C.B. Florencio Jr., Removal of pharmaceuticals from
    wastewater by intermittent electrocoagulation, Water, 9 (2017)
    1–15, doi: 10.3390/w9020085. 
-  B.K. Zaied, M. Rashid, M. Nasrullah, A.W. Zularisam, D. Pant,
    L. Singh, A comprehensive review on contaminants removal
    from pharmaceutical wastewater by electrocoagulation
    process, Sci. Total Environ., 726 (2020), doi: 10.1016/j.scitotenv.
    2020.138095. 
-  S. Masson, L. Reinert, S. Guittonneau, L. Duclaux, Cinétiques
    et isothermes d’adsorption de micropolluants sur un tissu et
    un feutre de carbone activé, J. Water Sci., 28 (2015) 207–213. 
-  M.D. Ruthven, Principles of Adsorption and Adsorption
    Processes, John Wiley & Sons, Wiley-Interscience Publication,
    New York, 1984. 
-  V. Bernal, L. Giraldo, J.C. Moreno-Piraján, Physicochemical
    properties of activated carbon: their effect on the adsorption
    of pharmaceutical compounds and adsorbate–adsorbent
    interactions, J. Carbon Res., 4 (2018) 1–20, doi: 10.3390/c4040062. 
-  A.L. Cazetta O.P. Junior, A.M.M. Vargas, A.P. da Silva,
    X. Zou, T. Asefa, V.C. Almeida, Thermal regeneration study
    of high surface area activated carbon obtained from coconut
    shell: characterization and application of response surface
    methodology, J. Anal. Appl. Pyrolysis, 101 (2013) 53–60. 
-  A. Sartape, A. Mandhare, P. Salvi, D. Pawar, P. Raut, M. Anuse,
    S. Kolekar, Removal of Bi(III) with adsorption technique
    using coconut shell activated carbon, Chin. J. Chem Eng.,
    20 (2012) 768–775. 
-  M. Termoul, B. Bestani, N. Benderdouche, M. Belhakem,
    E. Naffrechoux, Removal of phenol and 4-chlorophenol from
    aqueous solutions by olive stone-based activated carbon,
    Adsorpt. Sci. Technol., 24 (2016) 375–387. 
-  M. Benallou Benzekri, N. Benderdouche, B. Bestani, N. Douara,
    L. Duclaux, Valorization of olive stones into a granular activated
    carbon for the removal of Methylene blue in batch and fixed
    bed modes, J. Mater. Environ. Sci., 9 (2018) 272–284. 
-  B.S. Girgis, A.N.A. El-Hendawy, Porosity development in
    activated carbons obtained from date pits under chemical
    activation with phosphoric acid, Microporous Mesoporous
    Mater., 52 (2002) 105–117. 
-  A.A. Attia, B.S. Girgis, N.A. Fathy, Removal of methylene blue
	  by carbons derived from peach stones by H3PO4 activation:
    batch and column studies, Dyes Pigm., 76 (2008) 282–289. 
-  N. Douara, B. Bestani, N. Benderdouche, L. Duclaux, Sawdustbased
    activated carbon ability in the removal of phenol-based
    organics from aqueous media, Desal. Water Treat., 57 (2016)
    5529–5545. 
-  Y. Guo, D.A. Rockstraw, Physicochemical properties of carbons
    prepared from pecan shell by phosphoric acid activation,
    Bioresour. Technol., 98 (2007) 1513–1521. 
-  M. Al Bahri, L. Calvo, M.A. Gilarranz, J.J. Rodriguez, Activated
    carbon from grape seeds upon chemical activation with
    phosphoric acid: application to the adsorption of diuron
    from water, Chem. Eng. J., 203 (2012) 348–356. 
-  B.V. Pereira, G.N.Matus, M.J. Costa, A.C.A. Dos Santos,
    E.C. Silva-Zacarin, J.B. do Carmo, B. Nunes, Assessment
    of biochemical alterations in the neotropical fish species
    Phalloceros harpagos after acute and chronic exposure to the
    drugs paracetamol and propranolol, Environ. Sci. Pollut. Res.,
    25 (2018) 14899–14910. 
-  A. Macías-García, J. García-Sanz-Calcedo, J.P. Carrasco-
    Amador, R. Segura-Cruz, Adsorption of paracetamol in hospital
    wastewater through activated carbon filters, Sustainability,
    11 (2019) 1–11. 
-  M.A.E. de Franco, C.B. de Carvalho, M.M. Bonetto, R.d.P. Soares,
    L.A. Féris, Removal of amoxicillin from water by adsorption
    onto activated carbon in batch process and fixed bed column:
    kinetics, isotherms, experimental design and breakthrough
    curves modelling, J. Cleaner Prod., 161 (2017) 947–956. 
-  ASTM, Standard Test Method for Determination of Iodine
    Number of Activated Carbon, ASTM Annual Book, Section
    15, Active Standard D4607–94, 1999. 
-  B. Bestani, N. Benderdouche, B. Benstaali, M. Belhakem,
    A. Addou, Methylene blue and iodine adsorption onto an
    activated desert plant, Bioresour. Technol., 99 (2008) 8441–8444. 
-  C. Kaewprasit, E. Hequet, N. Abidi, J.P. Gourlo, Application
    of methylene blue adsorption to cotton fiber specific surface
    area measurement: part I. Methodology, J. Cotton Sci., 2 (1998)
    164–173. 
-  H.P. Boehm, Surface oxides on carbon and their analysis:
    a critical assessment, Carbon, 40 (2002) 145–149. 
-  S. Attouti, B. Bestani, N. Benderdouche, Chemical surface
    modification of seaweed species for cationic dyes removal
    from simulated water, Indian J. Environ. Prot., 40 (2020) 462–472. 
-  L.A. Al-Khateeb, S. Almotiry, M.A. Salam, Adsorption of
    pharmaceutical pollutants onto graphene nanoplatelets,
    Chem. Eng. J., 248 (2014) 191–199. 
-  A.P. Terzyk, The influence of activated carbon surface chemical
    composition on the adsorption of acetaminophen (paracetamol)
    in vitro: part II. TG, FTIR, and XPS analysis of carbons and
    the temperature dependence of adsorption kinetics at the
    neutral pH, Colloid Surf., A, 177 (2001) 23–45. 
-  X. Ma, H. Yang, L. Yu, Y. Chen, Y. Li, Preparation, surface and
    pore structure of high surface area activated carbon fibers
    from bamboo by steam activation, Materials, 7 (2014) 4431–4441. 
-  N. Zhuo, Y. Lan, W. Yang, Z. Yang, X. Li, X. Zhou, Y. Liu,
    J. Shen, X. Zhang Adsorption of three selected pharmaceuticals
    and personal care products (PPCPs) onto MIL-101(Cr)/
    natural polymer composite beads, Sep. Purif. Technol.,
    177 (2017) 272–280. 
-  R.C. Ferreira, O.M. Couto Jr., K.Q. Carvalho, P.A. Arroyo,
    M.A.S.D. Barros, Effect of solution pH on the removal of
    paracetamol by activated carbon of dende coconut mesocarp,
    Chem. Biochem. Eng. Q., 29 (2015) 47–53. 
-  I. Villaescusa, N. Fiol, J. Poch, A. Bianchi, C. Bazzicalupi,
    Mechanism of paracetamol removal by vegetable wastes:
    the contribution of π–π interactions, hydrogen bonding and
    hydrophobic effect, Desalination, 270 (2011) 135–142. 
-  G.N. Rolinson, A.M.Geddes, The 50th anniversary of the
    discovery of 6‐aminopenicillanic acid (6‐APA), Int. J. Antimicrob.
    Agents, 29 (2007) 3–8. 
-  I. Langmuir, The constitution and fundamental properties
    of solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295. 
-  H.M.F. Freundlich, Over the adsorption in solution, J. Phys.
    Chem., 57 (1906) 385–470. 
-  M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
    promoted iron catalysts, Acta Physicochim. URS, 12 (1940)
    217–222. 
-  S. Budyanto, S. Soedjono, W. Irawaty, N. Indraswati, Studies of
    adsorption equilibria and kinetics of amoxicillin from simulated
    wastewater using activated carbon and natural bentonite,
    J. Environ. Prot. Sci., 2 (2008) 72–80. 
-  G. Moussavi, A. Alahabadi, K. Yaghmaeian, M. Eskandari,
    Preparation, characterization and adsorption potential of the
    NH4Cl-induced activated carbon for the removal of amoxicillin
    antibiotic from water, Chem. Eng. J., 217 (2016) 119–128. 
-  L. Limousy, I. Ghouma, A. Ouederni, M. Jeguirim, Amoxicillin
    removal from aqueous solution using activated carbon
    prepared by chemical activation of olive stone, Environ. Sci.
    Pollut. Res., 24 (2017) 9993–10004. 
-  F. Medjdoub, K. Louhab, A. Hamouche, Comparative study of
    the adsorption of paracetamol from aqueous solution on olive
    stones and date pits, Des. Water Treat., 104 (2018) 225–233. 
-  S. Wong, Y. Lim, N. Ngadi, R. Mat, O. Hassan, I.M. Inuwa,
    B. Nurul, H.L. Jiun, Removal of acetaminophen by activated
    carbon synthesized from spent tea leaves: equilibrium, kinetics
    and thermodynamics studies, Powder Technol., 338 (2018)
    878–886. 
-  S. Lagergren, Zur theorie der sogenannten adsorption geloester
    stoffe, Kungl. Svens. Vetenskapsakad. Handl., 24 (1898) 1–39. 
-  Y.S. Ho, G. Mckay, Kinetic models for the sorption of dye from
    aqueous solution by wood, Process Saf. Environ., 76 (1998)
    183–191. 
-  W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon
    from solution, J. Sanitary Eng. Div., 89 (1963) 31–60. 
-  D. Hu, L. Wang, Adsorption of amoxicillin onto quaternized
    cellulose from flax oil: kinetic, equilibrium and thermodynamic
	  study, J. Taiwan Inst. Chem. Eng., 64 (2016) 227–234.