References
  -  Z.X. Wang, X.N. Lin, N. Tong, Z.T. Li, S.T. Sun, C. Liu, Optimal
    planning of a 100% renewable energy island supply system
    based on the integration of a concentrating solar power plant
    and desalination units, Int. J. Electr. Power Energy Syst.,
    117 (2020) 105707, doi: 10.1016/j.ijepes.2019.105707. 
-  Y.P. Hua, M. Oliphant, E.J. Hu, Development of renewable
    energy in Australia and China: a comparison of policies and
    status, Renewable Energy, 85 (2016) 1044–1051. 
-  R. Hastik, S. Basso, C. Geitner, C. Haida, A. Poljanec,
    A. Portaccio, B. Vrščaj, C. Walzer, Renewable energies and
    ecosystem service impacts, Renewable Sustainable Energy
    Rev., 48 (2015) 608–623. 
-  K. Shivarama Krishna, K. Sathish Kumar, A review on hybrid
    renewable energy systems, Renewable Sustainable Energy
    Rev., 52 (2015) 907–916. 
-  S. Li, L. Gao, H.G. Jin, Life cycle energy use and GHG emission
    assessment of coal-based SNG and power cogeneration
    technology in China, Energy Convers. Manage., 112 (2016)
    91–100. 
-  A. Khalilnejad, G.H. Riahy, A hybrid wind-PV system
    performance investigation for the purpose of maximum
    hydrogen production and storage using advanced alkaline
    electrolyzer, Energy Convers. Manage., 80 (2014) 398–406. 
-  M. Gökçek, Ö.B. Gökçek, Technical and economic evaluation
    of freshwater production from a wind-powered small-scale
    seawater reverse osmosis system (WP-SWRO), Desalination,
    381 (2016) 47–57. 
-  N. Ghaffour, J. Bundschuh, H. Mahmoudi, M.F.A. Goosen,
    Renewable energy-driven desalination technologies: a
    comprehensive review on challenges and potential applications
    of integrated systems, Desalination, 356 (2015) 94–114. 
-  C. Gopal, M. Mohanraj, P. Chandramohan, P. Chandrasekar,
    Renewable energy source water pumping systems—a literature
    review, Renewable Sustainable Energy Rev., 25 (2013) 351–370. 
-  W.X. Peng, A. Maleki, M.A. Rosen, P. Azarikhah, Optimization
    of a hybrid system for solar-wind-based water desalination
    by reverse osmosis: comparison of approaches, Desalination,
    442 (2018) 16–31. 
-  B. Zhou, B. Liu, D.S. Yang, J. Cao, T. Littler, Multi-objective
    optimal operation of coastal hydro-electrical energy system
    with seawater reverse osmosis desalination based on
    constrained NSGA-III, Energy Convers. Manage., 207 (2020)
    112533, doi: 10.1016/j.enconman.2020.112533. 
-  H. Mehrjerdi, Modeling and optimization of an island
    water-energy nexus powered by a hybrid solar-wind
    renewable system, Energy, 197 (2020) 117217, doi: 10.1016/j.
    energy.2020.117217. 
-  A. Maleki, M.G. Khajeh, M.A. Rosen, Weather forecasting for
    optimization of a hybrid solar-wind–powered reverse osmosis
    water desalination system using a novel optimizer approach,
    Energy, 114 (2016) 1120–1134. 
-  G.Z. Zhang, B.J. Wu, A. Maleki, W.P. Zhang, Simulated
    annealing-chaotic search algorithm based optimization of
    reverse osmosis hybrid desalination system driven by wind
    and solar energies, Sol. Energy, 173 (2018) 964–975. 
-  R. Xavier, S. Bruno, N.D. Trung, B. Jamel, Optimal system
    management of a water pumping and desalination process
    supplied with intermittent renewable sources, IFAC Proc.
    Volumes, 45 (2012) 369–374. 
-  H. Cherif, J. Belhadj, Chapter 15 – Environmental Life Cycle
    Analysis of Water Desalination Processes, V.G. Gude, Ed.,
    Sustainable Desalination Handbook: Plant Selection, Design
    and Implementation, Elsevier, Butterworth-Heinemann,
    Woburn, MA, 2018, pp. 527–559. https://doi.org/10.1016/
    b978-0-12-809240-8.00015-0. 
-  M.T. Mito, X.H. Ma, H. Albuflasa, P.A. Davies, Reverse osmosis
    (RO) membrane desalination driven by wind and solar
    photovoltaic (PV) energy: state of the art and challenges for
    large-scale implementation, Renewable Sustainable Energy
    Rev., 112 (2019) 669–685. 
-  S. Miller, H. Shemer, R. Semiat, Energy and environmental
    issues in desalination, Desalination, 366 (2015) 2–8. 
-  A. Malekia, A. Askarzadeh, Comparative study of artificial
    intelligence techniques for sizing of a hydrogen-based standalone
    photovoltaic/wind hybrid system, Int. J. Hydrogen
    Energy, 39 (2014) 9973–9984. https://doi.org/10.1016/B978-0-12-
    374501-9.X0001-5. 
-  A.K. Soteris, Solar Energy Engineering: Processes and
    Systems, Elsevier, Burlington, 2009. 
-  A. Hysa, Modeling and simulation of the photovoltaic cells for
    different values of physical and environmental parameters,
    Emerging Sci. J., 3 (2019) 395–406. 
-  T.M. Layadi, G. Champenois, M. Mostefai, Modeling and design
    optimization of an autonomous multisource system under a
    permanent power-supply constraint, IEEE Trans. Sustainable
    Energy, 6 (2015) 872–880. 
-  Grundfos-WinCAPS Software, 2017. Available at: https://www.
    industrialgines.com/en/wincaps-7-43-grundfos/ 
-  FilmTec releases ROSA Version 6.0, Membr. Technol.,
    2004 (2004) 3, doi: 10.1016/S0958-2118(04)00252-6. 
-  B. Guezuraga, R. Zauner, W. Pölz, Life cycle assessment of
    two different 2 MW class wind turbines, Renewable Energy,
    37 (2012) 37–44. 
-  J.Q. Peng, L. Lu, H.X. Yang, Review on life cycle assessment
    of energy payback and greenhouse gas emission of solar
    photovoltaic systems, Renewable Sustainable Energy Rev.,
    19 (2013) 255–274. 
-  H. Cherif, G. Champenois, J. Belhadj, Environmental life
    cycle analysis of a water pumping and desalination process
    powered by intermittent renewable energy sources, Renewable
    Sustainable Energy Rev., 59 (2016) 1504–1513. 
-  D. Abbes, A. Martinez, G. Champenois, Life cycle cost,
    embodied energy and loss of power supply probability for
    the optimal design of hybrid power systems, Math. Comput.
    Simul., 98 (2014) 46–62. 
-  Metrological Data from a Tunisian Site. Available at: http://
    www.meteo.tn 
-  H.R. El-Hana Bouchekara, M.S. Javaid, Y.A. Shaaban, M.S.
    Shahriar, M.A.M. Ramli, Y. Latreche, Decomposition based
    multiobjective evolutionary algorithm for PV/wind/Diesel
    Hybrid Microgrid System design considering load uncertainty,
	  Energy Rep., 7 (2021) 52–69.