References

  1. X. Duan, H. Sun, S. Wang, Metal-free carbocatalysis in advanced oxidation reactions, Acc. Chem. Res., 51 (2018) 678–687.
  2. A.R. Lado Ribeiro, N.F.F. Moreira, G. Li Puma, A.M.T. Silva, Impact of water matrix on the removal of micropollutants by advanced oxidation technologies, Chem. Eng. J., 363 (2019) 155–173.
  3. Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, H. He, Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review, Appl. Catal., B, 255 (2019) 117739, doi: 10.1016/j. apcatb.2019.05.041.
  4. A.V. Vorontsov, Advancing Fenton and photo-Fenton water treatment through the catalyst design, J. Hazard. Mater., 372 (2019) 103–112.
  5. E. Brillas, S. Garcia-Segura, Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: a review on the relevance of phenol as model molecule, Sep. Purif. Technol., 237 (2020) 116337, doi: 10.1016/j.seppur.2019.116337.
  6. G.M.S. ElShafei, A.M. Al-Sabagh, F.Z. Yehia, C.A. Philip, N.A. Moussa, G. Eshaq, A.E. ElMetwally, Metal oxychlorides as robust heterogeneous Fenton catalysts for the sonophotocatalytic degradation of 2-nitrophenol, Appl. Catal., B, 224 (2018) 681–691.
  7. A.E. ElMetwally, G. Eshaq, A.M. Al-Sabagh, F.Z. Yehia, C.A. Philip, N.A. Moussa, G.M.S. ElShafei, Insight into heterogeneous Fenton-sonophotocatalytic degradation of nitrobenzene using metal oxychlorides, Sep. Purif. Technol., 210 (2019) 452–462.
  8. H. Li, J. Shang, Z. Yang, W. Shen, Z. Ai, L. Zhang, Oxygen vacancy associated surface Fenton chemistry: surface structure dependent hydroxyl radicals generation and substrate dependent reactivity, Environ. Sci. Technol., 51 (2017) 5685–5694.
  9. X. Zhong, K.-X. Zhang, D. Wu, X.-Y. Ye, W. Huang, B.-X. Zhou, Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation, Chem. Eng. J., 383 (2020) 123148, doi: 10.1016/j.cej.2019.123148.
  10. F. Tian, G. Li, H. Zhao, F. Chen, M. Li, Y. Liu, R. Chen, Residual Fe enhances the activity of BiOCl hierarchical nanostructure for hydrogen peroxide activation, J. Catal., 370 (2019) 265–273.
  11. M. Gao, D. Zhang, X. Pu, H. Li, W. Li, X. Shao, D. Lv, B. Zhang, J. Dou, Combustion synthesis of Fe-doped BiOCl with high visible-light photocatalytic activities, Sep. Purif. Technol., 162 (2016) 114–119.
  12. Y. Mi, L. Wen, Z. Wang, D. Cao, R. Xu, Y. Fang, Y. Zhou, Y. Lei, Fe(III) modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst, Nano Energy, 30 (2016) 109–117.
  13. J. Xia, L. Xu, J. Zhang, S. Yin, H. Li, H. Xu, J. Di, Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids, CrystEngComm, 15 (2013) 10132–10141.
  14. X.-j. Yang, X.-m. Xu, J. Xu, Y.-f. Han, Iron oxychloride (FeOCl): an efficient Fenton-like catalyst for producing hydroxyl radicals in degradation of organic contaminants, J. Am. Chem. Soc., 135 (2013) 16058–16061.
  15. J. Zhang, M. Zhan, L. Zheng, C. Zhang, G. Liu, J. Sha, S. Liu, S. Tian, FeOCl/POM heterojunctions with excellent Fenton catalytic performance via different mechanisms, Inorg. Chem., 58 (2019) 250–258.
  16. Y. Wu, H. Wang, W. Tu, Y. Liu, Y.Z. Tan, X. Yuan, J.W. Chew, Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect, J. Hazard. Mater., 347 (2018) 412–422.
  17. J. Zhang, Q. Liu, H. He, F. Shi, G. Huang, B. Xing, J. Jia, C. Zhang, Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B, Carbon, 152 (2019) 284–294.
  18. J. Chen, Y. Si, Y. Liu, S. Wang, S. Wang, Y. Zhang, B. Yang, Z. Zhang, S. Zhang, Starch-regulated copper-terephthalic acid as a pH/hydrogen peroxide simultaneous-responsive fluorescent probe for lysosome imaging, Dalton Trans., 48 (2019) 13017–13025.
  19. X. Liu, C. Wang, T. Zhu, Q. Lv, Y. Li, D. Che, Simultaneous removal of NOx and SO2 from coal-fired flue gas based on the catalytic decomposition of H2O2 over Fe2(MoO4)3, Chem. Eng. J., 371 (2019) 486–499.
  20. J. Zhong, Y. Zhao, L. Ding, H. Ji, W. Ma, C. Chen, J. Zhao, Opposite photocatalytic oxidation behaviors of BiOCl and TiO2: direct hole transfer vs. indirect OH oxidation, Appl. Catal., B, 241 (2019) 514–520.
  21. M. Li, S. Yu, H. Huang, X. Li, Y. Feng, C. Wang, Y. Wang, T. Ma, L. Guo, Y. Zhang, Unprecedented eighteen-faceted BiOCl with a ternary facet junction boosting cascade charge flow and photo-redox, Angew. Chem. Int. Ed., 58 (2019) 9517–9521.
  22. S. Kim, H. Wang, Y.M. Lee, 2D nanosheets and their composite membranes for water, gas, and ion separation, Angew. Chem. Int. Ed., 58 (2019) 17512–17527.
  23. X. Xu, R. Zhao, B. Chen, L. Wu, C. Zou, W. Ai, H. Zhang, W. Huang, T. Yu, Progressively exposing active facets of 2D nanosheets toward enhanced pseudo-capacitive response and high-rate sodium storage, Adv. Mater., 31 (2019) 1900526, doi: 10.1002/adma.201900526.
  24. A. Dandapat, H. Gnayem, Y. Sasson, The fabrication of BiOClxBr1–x/alumina composite films with highly exposed {001} facets and their superior photocatalytic activities, Chem. Commun., 52 (2016) 2161–2164.
  25. W. Liu, Y. Shang, A. Zhu, P. Tan, Y. Liu, L. Qiao, D. Chu, X. Xiong, J. Pan, Enhanced performance of doped BiOCl nanoplates for photocatalysis: understanding from doping insight into improved spatial carrier separation, J. Mater. Chem. A, 5 (2017) 12542–12549.
  26. T. Yu, R. Yang, X. Zhao, X. Shen, Polyaniline-intercalated FeOCl cathode material for chloride-ion batteries, ChemElectroChem, 6 (2019) 1761–1767.
  27. R. Yang, T. Yu, X. Zhao, Polypyrrole-coated iron oxychloride cathode material with improved cycling stability for chloride ion batteries, J. Alloys Compd., 788 (2019) 407–412.
  28. X.-j. Yang, P.-f. Tian, X.-m. Zhang, X. Yu, T. Wu, J. Xu, Y.-f. Han, The generation of hydroxyl radicals by hydrogen peroxide decomposition on FeOCl/SBA-15 catalysts for phenol degradation, AIChE J., 61 (2015) 166–176.
  29. W.-K. Wang, J.-J. Chen, M. Gao, Y.-X. Huang, X. Zhang, H.-Q. Yu, Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio, Appl. Catal., B, 195 (2016) 69–76.
  30. J. Ma, J. Ding, L. Yu, L. Li, Y. Kong, S. Komarneni, BiOCl dispersed on NiFe-LDH leads to enhanced photo-degradation of Rhodamine B dye, Appl. Clay Sci., 109 (2015) 76–82.
  31. L. Jiang, K. Wang, X. Wu, G. Zhang, S. Yin, Amorphous bimetallic cobalt nickel sulfide cocatalysts for significantly boosting photocatalytic hydrogen evolution performance of graphitic carbon nitride: efficient interfacial charge transfer, ACS Appl. Mater. Interfaces, 11 (2019) 26898–26908.
  32. T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy, Phys. Rev. B, 59 (1999) 3195–3202.
  33. Y. Li, C. Wang, H. Zheng, F. Wan, F. Yu, X. Zhang, Y. Liu, Surface oxygen vacancies on WO3 contributed to enhanced photothermo-synergistic effect, Appl. Surf. Sci., 391 (2017) 654–661.
  34. Q. Hao, Z. Mo, Z. Chen, X. She, Y. Xu, Y. Song, H. Ji, X. Wu, S. Yuan, H. Xu, H. Li, 0D/2D Fe2O3 quantum dots/g-C3N4 for enhanced visible-light-driven photocatalysis, Colloid Surf., A, 541 (2018) 188–194.
  35. P.K. Malik, S.K. Saha, Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst, Sep. Purif. Technol., 31 (2003) 241–250.
  36. W. Li, Y. Wang, A. Irini, Effect of pH and H2O2 dosage on catechol oxidation in nano-Fe3O4. Eng. J., 244 (2014) 1–8.
  37. G. Fan, X. Zheng, J. Luo, H. Peng, H. Lin, M. Bao, L. Hong, J. Zhou, Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light, Chem. Eng. J., 351 (2018) 782–790.
  38. G. Fan, Y. You, B. Wang, S. Wu, Z. Zhang, X. Zheng, M. Bao, J. Zhan, Inactivation of harmful cyanobacteria by Ag/AgCl@ZIF-8 coating under visible light: efficiency and its mechanisms, Appl. Catal., B, 256 (2019) 117866, doi: 10.1016/j. apcatb.2019.117866.
  39. J. Hou, R. Wei, X. Wu, M. Tahir, X. Wang, F.K. Butt, C. Cao, Lantern-like bismuth oxyiodide embedded typha-based carbon via in situ self-template and ion exchange–recrystallization for high-performance photocatalysis, Dalton Trans., 47 (2018) 6692–6701.
  40. Y. Zheng, Z. Yu, H. Ou, A.M. Asiri, Y. Chen, X. Wang, Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation, Adv. Funct. Mater., 28 (2018) 1705407, doi: 10.1002/adfm.201705407.
  41. X.-W. Lei, C.-Y. Yue, J.-C. Wei, R.-Q. Li, F.-Q. Mi, Y. Li, L. Gao, Q.-X. Liu, Novel 3D semiconducting open-frameworks based on cuprous bromides with visible light driven photocatalytic properties, Chem. Eur. J., 23 (2017) 14547–14553.
  42. M. Chen, H. Xu, Q. Wang, D. Li, D. Xia, Activation mechanism of sodium percarbonate by FeOCl under visible-light-enhanced catalytic oxidation, Chem. Phys. Lett., 706 (2018) 415–420.
  43. R. Jiang, G. Lu, Z. Yan, D. Wu, R. Zhou, X. Bao, Insights into a CQD-SnNb2O6/BiOCl Z-scheme system for the degradation of benzocaine: influence factors, intermediate toxicity and photocatalytic mechanism, Chem. Eng. J., 374 (2019) 79–90.
  44. Y.-X. Yan, H. Yang, Z. Yi, T. Xian, R.-S. Li, X. Wang, Construction of Ag2S@CaTiO3 heterostructure photocatalysts for enhanced photocatalytic degradation of dyes, Desal. Water Treat., 170 (2019) 349–360.
  45. Y.-x. Yan, H. Yang, Z. Yi, X. Wang, R. Li, T. Xian, Evolution of Bi nanowires from BiOBr nanoplates through a NaBH4 reduction method with enhanced photodegradation performance, Environ. Eng. Sci., 37 (2020) 64–77.
  46. J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facetdependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc., 134 (2012) 4473–4476.
  47. W. Ouyang, F. Teng, X. Fang, High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets, Adv. Funct. Mater., 28 (2018) 1707178, doi: 10.1002/adfm.201707178.
  48. W. Zhang, X.a. Dong, B. Jia, J. Zhong, Y. Sun, F. Dong, 2D BiOCl/Bi12O17Cl2 nanojunction: enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation, Appl. Surf. Sci., 430 (2018) 571–577.
  49. X. Yan, H. Zhao, T. Li, W. Zhang, Q. Liu, Y. Yuan, L. Huang, L. Yao, J. Yao, H. Su, Y. Su, J. Gu, D. Zhang, In situ synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light, Nanoscale, 11 (2019) 10203–10208.
  50. J. Li, C. Xiao, K. Wang, Y. Li, G.-K. Zhang, Enhanced generation of reactive oxygen species under visible light irradiation by adjusting the exposed facet of FeWO4 nanosheets to activate oxalic acid for organic pollutant removal and Cr(VI) reduction, Environ. Sci. Technol., 53 (2019) 11023–11030.
  51. C. Xiao, J. Li, G.-K. Zhang, Synthesis of stable burger-like α-Fe2O3 catalysts: formation mechanism and excellent photo-Fenton catalytic performance, J. Cleaner Prod., 180 (2018) 550–559.
  52. T. Guo, K. Wang, G.-K. Zhang, X.-Y. Wu, A novel α-Fe2O3@g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance, Appl. Surf. Sci., 469 (2019) 331–339.