References
   -  Y. Tang, B. Zhong, B. Qu, S. Feng, S. Ding, S. Su, Z. Li, Z. Gan,
    Occurrence of perchlorate in groundwater, paired farmland soil,
    lettuce, and rhizosphere soil from Chengdu, China, Environ.
    Sci. Processes Impacts, 19 (2017) 752–757. 
-  F. Cao, J. Jaunat, N. Sturchio, B. Cancès, X. Morvan, A. Devos,
    V. Barbin, P. Ollivier, Worldwide occurrence and origin of
    perchlorate ion in waters: a review, Sci. Total Environ., 661
    (2019) 737–749. 
-  S.J. Luis, E.A. Miesner, C.L. Enslin, K. Heidecorn, Review of
    perchlorate occurrence in large public drinking water systems
    in the United States of America, Water Supply, 19 (2019)
    681–694. 
-  R.C. Pleus, L.M. Corey, Environmental exposure to perchlorate:
    a review of toxicology and human health, Toxicol. Appl.
    Pharmacol., 358 (2018) 102–109. 
-  J.R. Batista, T.M. Gingras, A.R. Vieira, Combining ion-exchange
    (IX) technology and biological reduction for perchlorate
    removal, Remediation, 13 (2002) 21–38. 
-  T.M. Gingras, J.R. Batista, Biological reduction of perchlorate
    in ion exchange regenerant solutions containing high salinity
    and ammonium levels, J. Environ. Monit., 4 (2002) 96–101. 
-  N. Bardiya, J.H. Bae, Dissimilatory perchlorate reduction:
    a review, Microbiol. Res., 166 (2011) 237–254. 
-  K.R. Han, T.H. Kang, H.C. Kang, K. Kim, D.H. Seo, Y. Ahn,
    Autotrophic perchlorate-removal using elemental sulfur
    granules and activated sludge: batch test, J. Life Sci., 21 (2011)
    1473–1480. 
-  W. Song, B. Gao, X. Zhang, F. Li, X. Xu, Q. Yue, Biological
    reduction of perchlorate in domesticated activated sludge
    considering interaction effects of temperature, pH, electron
    donors and acceptors, Process Saf. Environ. Prot., 123 (2019)
    169–178. 
-  Y. Zhu, N. Gao, W. Chu, S. Wang, J. Xu, Bacterial reduction
    of highly concentrated perchlorate: kinetics and influence of
    co-existing electron acceptors, temperature, pH and electron
    donors, Chemosphere, 148 (2016) 188–194. 
-  Y. Shang, Z. Wang, X. Xu, B. Gao, Z. Ren, Bio-reduction of
    free and laden perchlorate by the pure and mixed perchlorate
    reducing bacteria: considering the pH and coexisting nitrate,
    Chemosphere, 205 (2018) 475–483. 
-  Y. Ahn, Removal of perchlorate from salt water using
    microorganisms, J. Life Sci., 29 (2019) 1294–1303. 
-  V.K. Nguyen, Y. Ahn, Electrochemical removal and recovery
    of iron from groundwater using non-corrosive electrodes,
    J. Environ. Manage., 211 (2018) 36–41. 
-  V.K. Nguyen, M. Ha, S. Shin, M. Seo, J. Jang, S. Jo, D. Kim,
    S. Lee, Y. Jung, P. Kang, C. Shin, Y. Ahn, Electrochemical
    effect on bioleaching of arsenic and manganese from tungsten
    mine wastes using Acidithiobacillus spp., J. Environ. Manage.,
    223 (2018) 852–859. 
-  M.Y. Rusanova, P. Polášková, M. Muzikař, W.R. Fawcett,
    Electrochemical reduction of perchlorate ions on platinumactivated
    nickel, Electrochim. Acta, 51 (2006) 3097–3101. 
-  G.M. Brown, The reduction of chlorate and perchlorate ions at
    an active titanium electrode, J. Electroanal. Chem. Interfacial
    Electrochem., 198 (1986) 319–330. 
-  C.M.V.B. Almeida, B.F. Giannetti, T. Rabockai, Electrochemical
    study of perchlorate reduction at tin electrodes, J. Electroanal.
    Chem., 422 (1997) 185–189. 
-  E. Brauns, Salinity gradient power by reverse electrodialysis:
    effect of model parameters on electrical power output,
    Desalination, 237 (2009) 378–391. 
-  S. Pawlowski, R.M. Huertas, C.F. Galinha, J.G. Crespo,
    S. Velizarov, On operation of reverse electrodialysis (RED) and
    membrane capacitive deionisation (MCDI) with natural saline
    streams: a critical review, Desalination, 476 (2020) 114183,
    doi: 10.1016/j.desal.2019.114183. 
-  H. Tian, Y. Wang, Y. Pei, J.C. Crittenden, Unique applications
    and improvements of reverse electrodialysis: a review and
    outlook, Appl. Energy, 262 (2020) 114482, doi: 10.1016/j.
    apenergy.2019.114482. 
-  J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse
    electrodialysis: evaluation of suitable electrode systems, J. Appl.
    Electrochem., 40 (2010) 1461–1474. 
-  O. Scialdone, A.D’. Angelo, E.D. Lumè, A. Galia, Cathodic
    reduction of hexavalent chromium coupled with electricity
    generation achieved by reverse-electrodialysis processes using
    salinity gradients, Electrochim. Acta, 137 (2014) 258–265. 
-  O. Scialdone, A.D’. Angelo, A. Galia, Energy generation and
    abatement of Acid Orange 7 in reverse electrodialysis cells
    using salinity gradients, J. Electroanal. Chem., 738 (2015) 61–68. 
-  Y. Zhou, K. Zhao, C. Hu, H. Liu, Y. Wang, J. Qu, Electrochemical
    oxidation of ammonia accompanied with electricity generation
    based on reverse electrodialysis, Electrochim. Acta, 269 (2018)
    128–135. 
-  A.D’. Angelo, A. Galia, O. Scialdone, Cathodic abatement
    of Cr(VI) in water by microbial reverse-electrodialysis cells,
    J. Electroanal. Chem., 748 (2015) 40–46. 
-  X. Li, X. Jin, N. Zhao, I. Angelidaki, Y. Zhang, Novel bio-electro-
    Fenton technology for azo dye wastewater treatment using
    microbial reverse-electrodialysis electrolysis cell, Bioresour.
    Technol., 228 (2017) 322–329. 
-  M. Sui, Y. Dong, H. You, Enhanced photocatalytic activity for
    the degradation of rhodamine B by integrating salinity gradient
    power into a photocatalytic fuel cell, RSC Adv., 5 (2015)
    94184–94190. 
-  H. Tian, Y. Wang, Y. Pei, Energy capture from thermolytic
    solutions and simulated sunlight coupled with hydrogen
    peroxide production and wastewater remediation, Water Res.,
    170 (2020) 115318, doi: 10.1016/j.watres.2019.115318. 
-  Y. Kim, B.E. Logan, Hydrogen production from inexhaustible
    supplies of fresh and salt water using microbial reverseelectrodialysis
	  electrolysis cells, PNAS, 108 (2011) 16176–16181.