References
   -  M.S. Diallo, A. Street, R. Sustich, J. Duncan, N. Savage,
    Nanotechnology Applications for Clean Water: Solutions
    for Improving Water Quality, A volume in Micro and Nano
    Technologies, William Andrew, Norwich, New York, 2009. 
-  M.J. Yoo, H.B. Park, Effect of hydrogen peroxide on properties
    of graphene oxide in Hummers Method, Carbon, 141 (2019)
    515–522. 
-  Office of Water, ’The Clean Water and Drinking Water Gap
    Analysis,’ United States Environmental Protection Agency,
    Washington, D.C., 2002, p. 5. 
-  K.E. Drexler, Engines of Creation: The Coming Era of
    Nanotechnology (1987, September 16). Retrieved January 19,
    Doubleday Publishers, London, 2019, Available at: http://
    edrexler.com/p/06/00/EOC_Cover.html 
-  F. Pendolino, N. Armata, Graphene Oxide in Environmental
    Remediation Process, Springer, Switzerland, 2017. 
-  G. Nabi, M. Ali, S. Khan, S. Kumar, The crisis of water shortage
    and pollution in Pakistan: risk to public health, biodiversity,
    and ecosystem, Environ. Sci. Pollut. Res., 26 (2019) 10443–10445. 
-  A. Ahmed, I. Shafique, Perception of household in regards to
    water pollution: an empirical evidence from Pakistan, Environ.
    Sci. Pollut. Res., 26 (2019) 8543–8551. 
-  K. He, G. Chen, G. Zeng, A. Chen, Z. Huang, J. Shi, T. Huang,
    M. Peng, L. Hu, Three-dimensional graphene supported
    catalysts for organic dyes degradation, Appl. Catal., B,
    228 (2018) 19–28. 
-  M. Cametti, Z. Džolić, New frontiers in hybrid materials: noble
    metal nanoparticles – supramolecular gel systems, Chem.
    Commun., 50 (2016) 8273–8286. 
-  N.H. Syed, J. Ahmad, N.A. Khan, M.A. Shafiq, N. Khan, A lowcost
    wastewater treatment unit for reducing the usage of fresh
    water at car wash stations in Pakistan, Pak. J. Sci. Ind. Res.,
    62 (2019) 57–66. 
-  M.S. Abdel-Raouf, A.R.M. Abdul-Raheim, Removal of
    heavy metals from industrial waste water by biomassbased
    materials: a review, J. Pollut. Eff. Contr., 5 (2017) 180,
    doi: 10.4172/2375-4397.1000180. 
-  T.T.N. Le, V.T. Le, M.U. Dao, Q.V. Nguyen, T.T. Vu,
    M.H. Nguyen, H.S. Le, Preparation of magnetic graphene
    oxide/chitosan composite beads for effective removal of heavy
    metals and dyes from aqueous solutions, Chem. Commun.,
    206 (2019) 1337–1352. 
-  J. Tang, Y. Song, F. Zhao, S. Spinney, J. da Silva Bernardes,
    K.C. Tam, Compressible cellulose nanofibril (CNF) based
    aerogels produced via a bio-inspired strategy for heavy metal
    ion and dye removal, Carbohydr. Polym., 208 (2019) 404–412. 
-  S. Nizamuddin, M.T.H. Siddiqui, N.M. Mubarak, H.A. Baloch,
    E.C. Abdullah, S.A. Mazari, G.J. Griffin, M.P. Srinivasan,
    A. Tanksale, Chapter 17 – Iron oxide nanomaterials for the
    removal of heavy metals and dyes from wastewater, S. Thomas,
    D. Pasquini, S.-Y. Leu, D.A. Gopakumar, Eds., Nanoscale
    Materials in Water Purification: Micro and Nano Technologies,
    Elsevier, Amsterdam, Netherlands, 2019, pp. 447–472. 
-  P.M. Dellamatrice, M.E. Silva-Stenico, L.A.B. de Moraes,
    M.F. Fiore, R.T.R. Monteiro, Degradation of textile dyes by
    cyanobacteria, Braz. J. Microbiol., 48 (2017) 25–31. 
-  A.G. Varghese, S.A. Paul, M.S. Latha, Remediation of heavy
    metals and dyes from wastewater using cellulose-based
    adsorbents, Environ. Chem. Lett., 17 (2019) 867–877. 
-  N. Minju, K. Venkat Swaroop, K. Haribabu, V. Sivasubramanian,
    P. Senthil Kumar, Removal of fluoride from aqueous media by
    magnesium oxide-coated nanoparticles, Desal. Water Treat.,
    53 (2015) 2905–2914. 
-  S. Yu, X. Wang, X. Tan, X. Wang, Sorption of radionuclides
    from aqueous systems onto graphene oxide-based materials:
    a review, Inorg. Chem. Front., 2 (2015) 593–612. 
-  S. Song, S. Zhang, S. Huang, R. Zhang, L. Yin, Y. Hu, X. Wang,
	  A novel multi-shelled Fe3O4@MnOx hollow microspheres
    for immobilizing U(VI) and Eu(III), Chem. Eng. J., 355 (2019)
    697–709. 
-  G. Neeraj, S. Krishnan, P.S. Kumar, K.R. Shriaishvarya,
    V.V. Kumar, Performance study on sequestration of copper
    ions from contaminated water using newly synthesized high
    effective chitosan coated magnetic nanoparticles, J. Mol. Liq.,
    214 (2016) 335–346. 
-  S. Yu, X. Wang, S. Yang, G. Sheng, A. Alsaedi, T. Hayat,
    X. Wang, Interaction of radionuclides with natural and
    manmade materials using XAFS technique, Sci. China Chem.,
    60 (2017) 170–187. 
-  M. Montaña, A. Camacho, I. Serrano, R. Devesa, L. Mati,
    I. Vallés, Removal of radionuclides in drinking water by
    membrane treatment using ultrafiltration, reverse osmosis and
    electrodialysis reversal, J. Environ. Radioact., 125 (2013) 86–92. 
-  V. Mikušová, O. Lukačovičová, E. Havránek, P. Mikuš,
    Radionuclide X-ray fluorescence analysis of selected elements
    in drug samples with 8-hydroxyquinoline preconcentration,
    J. Radioanal. Nucl. Chem., 299 (2014) 1645–1652. 
-  S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J. Xu, In situ
    ion exchange synthesis of strongly coupled Ag@AgCl/g-C3N4 porous nanosheets as plasmonic photocatalyst for
    highly efficient visible-light photocatalysis, ACS Appl. Mater.
    Interfaces, 6 (2014) 22116–22125. 
-  V. Radchenko, J.W. Engle, J.J. Wilson, J.R. Maassen, F.M. Nortier,
    W.A. Taylor, M.E. Fassbender, Application of ion exchange
    and extraction chromatography to the separation of actinium
    from proton-irradiated thorium metal for analytical purposes,
    J. Chromatogr. A, 1380 (2015) 55–63. 
-  Y. Zou, X. Wang, Y. Ai, Y. Liu, J. Li, Y. Ji, X. Wang, Coagulation
    behavior of graphene oxide on nanocrystallined Mg/Al
    layered double hydroxides: batch experimental and theoretical
    calculation study, Environ. Sci. Technol., 50 (2016) 3658–3667. 
-  H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, High-efficient synthesis
    of graphene oxide based on improved Hummers Method, Sci.
    Rep., 6 (2016) 36143, doi: 10.1038/srep36143. 
-  N. Alipour, H. Namazi, Removing Paraquat and Nile blue from
    aqueous solution using double-oxidized graphene oxide coated
    by polydopamine nanocomposite, Int. J. Environ. Sci. Technol.,
    16 (2019) 3203–3210. 
-  A. Murcia-Salvador, J.A. Pellicer, M.I. Fortea, V.M. Gómez-
    López, M.I. Rodríguez-López, E. Núñez-Delicado, J.A. Gabaldón,
    Adsorption of Direct Blue 78 using chitosan and cyclodextrins
    as adsorbents, Polymers (Basel), 11 (2019) 1003, doi: 10.3390/
    polym11061003. 
-  K. Tewari, G. Singhal, R.K. Arya, Adsorption removal of
    Malachite green dye from aqueous solution, Rev. Chem. Eng.,
    34 (2018) 427–453. 
-  M.S. Tizo, L.A.V. Blanco, A.C.Q. Cagas, B.R.B.D. Cruz, J.C.
    Encoy, J.V. Gunting, V.I.F. Mabayo, Efficiency of calcium
    carbonate from eggshells as an adsorbent for cadmium removal
    in aqueous solution, Sustainable Environ. Res., 28 (2018)
    326–332. 
-  P.V. Kamat, Graphene-based nanoarchitectures. Anchoring
    semiconductor and metal nanoparticles on a two-dimensional
    carbon support, J. Phys. Chem. Lett., 1 (2009) 520–527. 
-  P. Cadden-Zimansky, M. Shinn, G.T. Myers, Y. Chu,
    M.J. Dalrymple, H.C. Travaglini, Formation of the n = 0 Landau
    level in hybrid graphene, J. Phys. Commun., 2 (2018) 051001. 
-  I.A. Ovid’Ko, Metal-graphene nanocomposites with enhanced
    mechanical properties: a review, Rev. Adv. Mater. Sci.,
    38 (2014) 190–200. 
-  A. Dimiev, D.V. Kosynkin, L.B. Alemany, P. Chaguine, J.M.
    Tour, Pristine graphite oxide, J. Am. Chem. Soc., 134 (2012)
    2815–2822. 
-  A.A. Alqadami, M. Naushad, Z.A. ALOthman, M. Alsuhybani,
    M. Algamdi, Excellent adsorptive performance of a new
    nanocomposite for removal of toxic Pb(II) from aqueous
    environment: adsorption mechanism and modeling
    analysis, J. Hazard. Mater., 389 (2020) 121896, doi: 10.1016/j.
    jhazmat.2019.121896. 
-  T. Ahmed, S. Imdad, K. Yaldram, S.M. Raza, Awareness and
    attitude about nanotechnology in Pakistan, J. Nano Res.,
    7 (2015) 44–51. 
-  V. Modi, S. Akst, D. Davison, 1715: acute cadmium toxicity
    causing multisystem organ failure, J. Respir. Crit. Care Sleep
    Med., 47 (2019) 831, doi: 10.1097/01.ccm.0000552454.38387.20. 
-  S. Chehreh Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann,
    J. Gutzmer, A review of graphite beneficiation techniques,
    Miner. Process. Extr. Metall. Rev.: Int. J., 37 (2016) 58–68. 
-  A. George, R. Ganesan, T. Thangeeswari, Redox deposition
    of manganese oxide nanoparticles on graphite electrode by
    immersion technique for electrochemical super capacitors,
    Indian J. Sci. Technol., 9 (2016) 85782, doi: 10.17485/ijst/2016/
    v9i1/85782. 
-  J.H. Kang, T. Kim, J. Choi, J. Park, Y.S. Kim, M.S. Chang,
    C.R. Park, Hidden second oxidation step of Hummers Method,
    Chem. Mater., 28 (2016) 756–764. 
-  D. Liu, Q. Bian, Y. Li, Y. Wang, A. Xiang, H. Tian, Effect of
    oxidation degrees of graphene oxide on the structure and
    properties of poly(vinyl alcohol) composite films, Compos. Sci.
    Technol., 129 (2016) 146–152. 
-  P. Feicht, J. Biskupek, T.E. Gorelik, J. Renner, C.E. Halbig,
    M. Maranska, S. Eigler, Brodie’s or Hummers’ method: oxidation
    conditions determine the structure of graphene oxide, Chem.
    Eur. J., 25 (2019) 8955–8959. 
-  B. Paulchamy, G. Arthi, B.D. Lignesh, A simple approach
    to stepwise synthesis of graphene oxide nanomaterial, J.
    Nanomed. Nanotechnol., 6 (2015) 1000253, doi: 10.4172/
    2157-7439.1000253. 
-  W. Chen, L. Yan, Preparation of graphene by a low-temperature
    thermal reduction at atmosphere pressure, Nanoscale, 2 (2010)
    559–563. 
-  S. Basu, S. Hazra, Graphene–noble metal nano-composites and
    applications for hydrogen sensors, Carbon, 3 (2017) 29, doi:
    10.3390/c3040029. 
-  Y. Tian, F. Wang, Y. Liu, F. Pang, X. Zhang, Green synthesis of
    silver nanoparticles on nitrogen-doped graphene for hydrogen
    peroxide detection, Electrochim. Acta, 146 (2014) 646–653. 
-  K.T. Dissanayake, W. Rohini de Silva, A. Kumarasinghe,
    K.M. Nalin de Silva, Synthesis of graphene and graphene oxide
    based nanocomposites and their characterization, SAITM,
    1 (2014) 75–78. 
-  H. Chang, H. Wu, Graphene-based nanocomposites:
    preparation, functionalization, and energy and environmental
    applications, Energy Environ. Sci., 6 (2013) 3483–3507. 
-  B. Zahed, H. Hosseini-Monfared, A comparative study of
    silver-graphene oxide nanocomposites as a recyclable catalyst
    for the aerobic oxidation of benzyl alcohol: support effect,
    Appl. Surf. Sci., 328 (2015) 536–547. 
-  Q. Bao, D. Zhang, P. Qi, Synthesis and characterization of silver
    nanoparticle and graphene oxide nanosheet composites as a
    bactericidal agent for water disinfection, J. Colloid Interface
    Sci., 360 (2011) 463–470. 
-  A.A. Velayati, P. Farnia, Nontuberculous Mycobacteria (NTM):
    Microbiological, Clinical and Geographical Distribution,
    Academic Press, London, 2019. 
-  L. Shi, J. Chen, L. Teng, L. Wang, G. Zhu, S. Liu, L. Ren, The
    antibacterial applications of graphene and its derivatives,
    Small, 12 (2016) 4165–4184. 
-  Y. Zhu, S. Murali, W. Cai, X. Li, J. Suk, J.R. Potts, R.S. Ruoff,
    Graphene and graphene oxide: synthesis, properties, and
    applications, Adv. Mater., 22 (2010) 3906–3924. 
-  J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong,
    S. Jeon, Enhanced mechanical properties of graphene/copper
    nanocomposites using a molecular‐level mixing process, Adv.
    Mater., 25 (2013) 6724–6729. 
-  S. Chaiyakun, N. Witit-Anun, N. Nuntawong, P. Chindaudom,
    S. Oaew, C. Kedkeaw, P. Limsuwan, Preparation and
    characterization of graphene oxide nanosheets, Procedia Eng.,
    32 (2012) 759–764. 
-  D.W. Lee, L.V. de Los Santos, J.W. Seo, L.L. Felix,
    A.D. Bustamante, J.M. Cole, C.H.W. Barnes, The structure of
    graphite oxide: investigation of its surface chemical groups,
    J. Phys. Chem., 114 (2010) 5723–5728, 
-  J. Gao, F. Bao, L. Feng, K. Shen, Q. Zhu, D. Wang, C. Yan,
    Functionalized graphene oxide modified polysebacic anhydride
    as drug carrier for levofloxacin controlled release, RSC Adv.,
    1 (2011) 1737–1744. 
-  M.S. Eluyemi, M.A. Eleruja, A.V. Adedeji, B. Olofinjana,
    O. Fasakin, O.O. Akinwunmi, O.O. Ilori, A.T. Famojuro,
    S.A. Ayinde, E.O.B. Ajayi, Synthesis and characterization of
    graphene oxide and reduced graphene oxide thin films deposited
    by spray pyrolysis method, Graphene, 5 (2016) 143–154. 
-  L. Shahriary, A.A. Athawale, Graphene oxide synthesized by
    using modified hummers approach, Int. J. Renewable Energy
    Environ. Eng., 2 (2014) 58–63. 
-  C.H. Manoratne, S.R.D. Rosa, I.R.M. Kottegoda, XRD-HTA,
    UV visible, FTIR and SEM interpretation of reduced graphene
    oxide synthesized from high purity vein graphite, Mater. Sci.
    Res. India, 14 (2017) 19–30. 
-  S. Thakur, N. Karak, Alternative methods and nature-based
    reagents for the reduction of graphene oxide: a review,
    Carbon, 94 (2015) 224–242. 
-  W.W. Mhike, H.J. Kruger, D. Lombaard, Characterization of
    commercial expandable graphite fire retardants, Thermochim.
    Acta, 584 (2014) 8–16. 
-  D.C. Weindorf, S. Chakraborty, Portable X-ray fluorescence
    spectrometry analysis of soils, Soil Sci. Soc. Am. J., 84 (2020)
    1384–1392. 
-  Z. Sofer, O. Jankovský, P. Šimek, L. Soferová, D. Sedmidubský,
    M. Pumera, Highly hydrogenated graphene via active
    hydrogen reduction of graphene oxide in the aqueous phase at
    room temperature, Nanoscale, 6 (2014) 2153–2160. 
-  J. Liu, H. Yan, M.J. Reece, K. Jiang, Toughening of zirconia/
    alumina composites by the addition of graphene platelets,
    J. Eur. Ceram. Soc., 32 (2012) 4185–4193. 
-  E. Aliyev, V. Filiz, M. Khan, Y.J. Lee, C. Abetz, V. Abetz, Structural
    characterization of graphene oxide: Surface functional groups
    and fractionated oxidative debris, Nanomaterials, 9 (2019)
    1180, doi: 10.3390/nano9081180. 
-  H. Pardo, R. Faccio, F.M. Araújo-Moreira, O.F. De Lima,
    A.W. Mombrú, Synthesis and characterization of stable room
    temperature bulk ferromagnetic graphite, Carbon, 44 (2006)
    565–569. 
-  A.U. Liyanage, E.U. Ikhuoria, A.A. Adenuga, V.T. Remcho,
    M.M. Lerner, Synthesis and characterization of lowgeneration
    polyamidoamine (PAMAM) dendrimer-sodium
    montmorillonite (Na-MMT) clay nanocomposites, Inorg.
    Chem., 52 (2013) 4603–4610. 
-  T.S. Sreeprasad, S.M. Maliyekkal, K.P. Lisha, T. Pradeep,
    Reduced graphene oxide–metal/metal oxide composites: facile
    synthesis and application in water purification, J. Hazard.
    Mater., 186 (2011) 921–931. 
-  M. Rafi, B. Samiey, C.-H. Cheng, Study of adsorption mechanism
    of Congo red on graphene oxide/PAMAM nanocomposite,
    Materials, 11 (2018) 496, doi: 10.3390/ma11040496. 
-  D. Wang, L. Liu, X. Jiang Adsorption and removal of Malachite
    green from aqueous solution using magnetic bcyclodextringraphene
    oxide nanocomposites as adsorbents, Colloids Surf.,
    A, 466 (2015)166–173. 
-  S. Debnath, A. Maity, K. Pillay, Impact of process parameters
    on removal of Congo red by graphene oxide from aqueous
    solution, J. Environ. Chem. Eng., 2 (2014) 260–272. 
-  H. Hou, R. Zhou, P. Wu, L. Wu, Removal of Congo red dye from
    aqueous solution with hydroxyapatite/chitosan composite,
    Chem. Eng. J., 211 (2012) 336–342. 
-  A.C. Obreja, D. Cristea, R. Gavrila, V. Schiopu, A. Dinescu,
    M. Danila, F. Comanescu, Isocyanate functionalized graphene/
    P3HT based nanocomposites, Appl. Surf. Sci., 276 (2013)
    458–467. 
-  W. Xing, G. Lalwani, I. Rusakova, B. Sitharaman, Degradation
    of graphene by hydrogen peroxide, Part. Part. Syst. Char.,
    31 (2014) 745–750. 
-  Z. Aly, A. Graulet, N. Scales, T. Hanley, Removal of aluminium
    from aqueous solutions using PAN-based adsorbents:
    characterisation, kinetics, equilibrium and thermodynamic
    studies, Environ. Sci. Pollut. Res., 21 (2014) 3972–3986. 
-  I. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The
    antibacterial mechanism of silver nanoparticles and its
    application in dentistry, J. Nanomedicine, 15 (2020) 2555–2562. 
-  H. kim, S.-O. Kang, S.G. Park, H.S. Park, Adsorption isotherms
    and kinetics of cationic and anionic dyes on three-dimensional
    reduced graphene oxide macrostructure, J. Ind. Eng. Chem.,
    21 (2015) 1191–1196. 
-  P. Ramachandran, R. Vairamuthu, S. Ponnusamy, Adsorption
    isotherms, kinetics, thermodynamics and desorption studies
    of reactive Orange 16 on activated carbon derived from Ananas
    comosus (L.) carbon, J. Eng. Appl. Sci., 6 (2011) 15–26. 
-  R.S. Krishna, J. Mishra, S.K. Das, S.M. Mustakim, An overview
    of current research trends on graphene and it’s applications,
	  World Sci. News., 132 (2019) 206–219.