References

  1. M. Gustafsson, S. Anderberg, Dimensions and characteristics of biogas policies – modelling the European policy landscape, Renewable Sustainable Energy Rev., 135 (2021) 110200, doi: 10.1016/j.rser.2020.110200.
  2. J.J. Cadillo-Benalcazar, S.G.F. Bukkens, M. Ripa, M. Giampietro, Why does the European Union produce biofuels? Examining consistency and plausibility in prevailing narratives with quantitative storytelling, Energy Res. Soc. Sci., 71 (2021) 101810, doi: 10.1016/j.erss.2020.101810.
  3. M. Banja, M. Jégard, V. Motola, R. Sikkema, Support for biogas in the EU electricity sector – a comparative analysis, Biomass Bioenergy, 128 (2019) 105313, doi: 10.1016/j. biombioe.2019.105313.
  4. N. Scarlat, J.-F. Dallemand, F. Fahl, Biogas: developments and perspectives in Europe, Renewable Energy, 129 (2018) 457–472.
  5. B. Igliński, R. Buczkowski, M. Cichosz, Biogas production in Poland—current state, potential and perspectives, Renewable Sustainable Energy Rev., 50 (2015) 686–695.
  6. GUS (Statistics Poland), Energy from Renewable Sources in 2019, Warsaw, 2020.
  7. B. Igliński, R. Buczkowski, A. Iglińska, M. Cichosz, G. Piechota, W. Kujawski, Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential, Renewable Sustainable Energy Rev., 16 (2012) 4890–4900.
  8. D. Szymańska, A. Lewandowska, Biogas power plants in Poland—structure, capacity, and spatial distribution, Sustainability, 7 (2015) 16801–16819.
  9. B. Igliński, G. Piechota, P. Iwański, M. Skarzatek, G. Pilarski, 15 Years of the Polish agricultural biogas plants: their history, current status, biogas potential and perspectives, Clean Technol. Environ. Policy, 22 (2020) 281–307.
  10. A. Rejman-Burzyńska, H. Maksymiak-Lach, E. Jędrysik, The energy potential of biogas – an estimation of biogas production resources in Poland, CHEMIK, 67 (2013) 446–453.
  11. K.A. Koryś, A.E. Latawiec, K. Grotkiewicz, M. Kuboń, The review of biomass potential for agricultural biogas production in Poland, Sustainability, 11 (2019) 6515, doi: 10.3390/su11226515.
  12. S. Marks, J. Dach, F.J.F. Morales, J. Mazurkiewicz, P. Pochwatka, Ł. Gierz, New trends in substrates and biogas systems in Poland, J. Ecol. Eng., 21 (2020) 19–25.
  13. A. Piwowar, M. Dzikuć, J. Adamczyk, Agricultural biogas plants in Poland – selected technological, market and environmental aspects, Renewable Sustainable Energy Rev., 58 (2016) 69–74.
  14. J. Chodkowska-Miszczuk, D. Szymańska, Agricultural biogas plants—a chance for diversification of agriculture in Poland, Renewable Sustainable Energy Rev., 20 (2013) 514–518.
  15. W.M. Budzianowski, Sustainable biogas energy in Poland: prospects and challenges, Renewable Sustainable Energy Rev., 16 (2012) 342–349.
  16. GUS (Statistics Poland), Environment 2020, Warsaw, 2020.
  17. P. Kaszycki, M. Głodniok, P. Petryszak, Towards a bio-based circular economy in organic waste management and wastewater treatment – the Polish perspective, New Biotechnol., 61 (2021) 80–89.
  18. M. Ruszel, Types of barriers to the integration of the EU Gas Market, Eur. Integr. Stud., 9 (2015) 155–160.
  19. M. de la E.M. Pérez, D. Scholten, K.S. Stegen, The multi-speed energy transition in Europe: opportunities and challenges for EU energy security, Energy Strategy Rev., 26 (2019) 100415, doi: 10.1016/j.esr.2019.100415.
  20. European Parliament, Energy Policy: General Principles, Brussels, 2020. Available at: https://www.europarl.europa.eu (accessed on 5 February 2021).
  21. C. Inês, P.L. Guilherme, M.-G. Esther, G. Swantje, H. Stephen, H. Lars, Regulatory challenges and opportunities for collective renewable energy prosumers in the EU, Energy Policy, 138 (2020) 111212, doi: 10.1016/j.enpol.2019.111212.
  22. C. Inês, M.-G. Esther, People in transitions: energy citizenship, prosumerism and social movements in Europe, Energy Res. Soc. Sci., 69 (2020) 101718, doi: 10.1016/j.erss.2020.101718.
  23. European Commission, Communication from the Commission – The European Green Deal, Brussels, 2019.
  24. H. Fekete, T. Kuramochi, M. Roelfsema, M. den Elzen, N. Forsell, N. Höhne, L. Luna, F. Hans, S. Sterl, J. Olivier, H. van Soest, S. Frank, M. Gusti, A review of successful climate change mitigation policies in major emitting economies and the potential of global replication, Renewable Sustainable Energy Rev., 137 (2021) 110602, doi: 10.1016/j.rser.2020. 110602.
  25. Directive (EU) 2018/2001 of The European Parliament and of The Council of 11 December 2018 on the Promotion of the Use of Energy From Renewable Sources.
  26. N.E. Koltsaklis, A.S. Dagoumas, G. Seritan, R. Porumb, Energy transition in the South East Europe: the case of the Romanian power system, Energy Rep., 6 (2020) 2376–2393.
  27. M. Kuchler, G. Bridge, Down the black hole: sustaining national socio-technical imaginaries of coal in Poland, Energy Res. Soc. Sci., 41 (2018) 136–147.
  28. Eurostat, Energy, Transport and Environment Statistics – 2019 Edition, Luxembourg, 2019.
  29. I.V. Provornaya, I.V. Filimonova, L.V. Eder, V.Y. Nemov, E.A. Zemnukhova, Formation of energy policy in Europe, taking into account trends in the global market, Energy Rep., 6 (2020) 599–603.
  30. C. Gürsan, V. de Gooyert, The systemic impact of a transition fuel: does natural gas help or hinder the energy transition?, Renewable Sustainable Energy Rev., 138 (2021) 110552, doi: 10.1016/j.rser.2020.110552.
  31. M. Gustafsson, N. Svensson, Cleaner heavy transports – environmental and economic analysis of liquefied natural gas and biomethane, J. Cleaner Prod., 278 (2021) 123535, doi: 10.1016/j.jclepro.2020.123535.
  32. European Commission, National Energy and Climate Plans for 2021–2030 Under the EU Energy Union – Assessment of the Energy Efficiency Dimension, Brussel, 2020.
  33. T. Ahmad, D.D. Zhang, A critical review of comparative global historical energy consumption and future demand: the story told so far, Energy Rep., 6 (2020) 1973–1991.
  34. Eurostat, Natural Gas Supply Statistics – Statistics Explained, Luxembourg, 2020.
  35. L. Rodríguez-Fernández, A.B.F. Carvajal, L.M. Ruiz-Gómez, Evolution of European Union’s energy security in gas supply during Russia–Ukraine gas crises (2006–2009), Energy Strategy Rev., 30 (2020) 100518, doi: 10.1016/j.esr.2020.100518.
  36. A. Sutrisno, F. Alkemade, EU gas infrastructure resilience: competition, internal changes, and renewable energy pressure, Energy Rep., 6 (2020) 24–30.
  37. R. Biały, P. Janusz, M. Ruszel, M. Łaciak, T. Olkuski, M. Ruszel, A. Szurlej, The role of LNG supplies in balancing natural gas demand in EU countries, E3S Web Conf., 108 (2019) 02014, doi: 10.1051/e3sconf/201910802014.
  38. D. Ansari, F. Holz, Between stranded assets and green transformation: fossil-fuel-producing developing countries towards 2055, World Dev., 130 (2020) 104947, doi: 10.1016/j. worlddev.2020.104947.
  39. K. Bos, J. Gupta, Stranded assets and stranded resources: implications for climate change mitigation and global sustainable development, Energy Res. Soc. Sci., 56 (2019) 101215, doi: 10.1016/j.erss.2019.05.025.
  40. C.L. Mao, Y.Z. Feng, X.J. Wang, G.X. Ren, Review on research achievements of biogas from anaerobic digestion, Renewable Sustainable Energy Rev., 45 (2015) 540–555.
  41. A. Rabii, S. Aldin, Y. Dahman, E. Elbeshbishy, A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration, Energies, 12 (2019) 1106, doi: 10.3390/en12061106.
  42. A. Nsair, S.O. Cinar, A. Alassali, H.A. Qdais, K. Kuchta, Operational parameters of biogas plants: a review and evaluation study, Energies, 13 (2020) 3761, doi: 10.3390/en13153761.
  43. D.P. Van, T. Fujiwara, B.L. Tho, P.P.S. Toan, G.H. Minh, A review of anaerobic digestion systems for biodegradable waste: configurations, operating parameters, and current trends, Environ. Eng. Res., 25 (2020) 1–17.
  44. I. Koniuszewska, E. Korzeniewska, M. Harnisz, M. Czatzkowska, Intensification of biogas production using various technologies: a review, Int. J. Energy Res., 44 (2020) 6240–6258.
  45. M. Balat, H. Balat, Biogas as a renewable energy source—a review, Energy Sources Part A, 31 (2009) 1280–1293.
  46. R.L. Grando, A.M. de Souza Antune, F.V. da Fonseca, A. Sánchez, R. Barrena, X. Font, Technology overview of biogas production in anaerobic digestion plants: a European evaluation of research and development, Renewable Sustainable Energy Rev., 80 (2017) 44–53.
  47. V.K. Tyagi, S.-L. Lo, Sludge: a waste or renewable source for energy and resources recovery?, Renewable Sustainable Energy Rev., 25 (2013) 708–728.
  48. K. Obileke, N. Nwokolo, G. Makaka, P. Mukumba, H. Onyeaka, Anaerobic digestion: technology for biogas production as a source of renewable energy—a review, Energy Environ., 32 (2021) 191–225.
  49. Z. Ginalski, Substrates for Agricultural Biogas Plants, Agricultural Advisory Centre Radom Branch, Radom, 2011.
  50. European Biogas Association, Renewable Gas Success Stories, Brussels, 2020.
  51. M. Prussi, M. Padella, M. Conton, E.D. Postma, L. Lonza, Review of technologies for biomethane production and assessment of Eu transport share in 2030, J. Cleaner Prod., 222 (2019) 565–572.
  52. F.M. Baena-Moreno, L. Pastor-Pérez, Q. Wang, T.R. Reina, Bio-methane and bio-methanol co-production from biogas: a profitability analysis to explore new sustainable chemical processes, J. Cleaner Prod., 265 (2020) 121909, doi: 10.1016/j. jclepro.2020.121909.
  53. IEA, Outlook for Biogas and Biomethane, Paris, 2020.
  54. European Commission, Quarterly Report Energy on European Gas Markets, Brussels, 2020.
  55. EuroObserv’ER, Biogas Barometer, 2020.
  56. G. Przydatek, A.K. Wota, Analysis of the comprehensive management of sewage sludge in Poland, J. Mater. Cycles Waste Manage., 22 (2020) 80–88.
  57. Chamber of Commerce “Polish Waterworks” (IGWP), Information Materials, Bydgoszcz, 2020.
  58. M. Załuska, J. Piekutin, L. Magrel, Economic and energetic efficiency of biogas plant depending on the substrate applicable, Civ. Environ. Eng., 9 (2018) 51–56.
  59. N. Makisha, D. Semenova, Production of biogas at wastewater treatment plants and its further application, MATEC Web Conf., 144 (2018) 04016.
  60. A. Masłoń, M. Wójcik, K. Chmielowski, Efficient use of energy in wastewater treatment plants, Energy Policy Stud., 1 (2018) 12–26.
  61. A. Kiselev, E. Magaril, R. Magaril, D. Panepinto, M. Ravina, M.C. Zanetti, Towards circular economy: evaluation of sewage sludge biogas solutions, Resources, 8 (2019) 91, doi: 10.3390/ resources8020091.
  62. E. Neczaj, A. Grosser, Circular economy in wastewater treatment plant – challenges and barriers, Proceedings, 2 (2018) 614, doi: 10.3390/proceedings2110614.
  63. K. Rosiek, Directions and challenges in the management of municipal sewage sludge in Poland in the context of the circular economy, Sustainability, 12 (2020) 3686, doi: 10.3390/ su12093686.
  64. M. Smol, C. Adam, M. Preisner, Circular economy model framework in the European water and wastewater sector, J. Mater. Cycles Waste Manage., 22 (2020) 682–697.
  65. Y. Shen, J.L. Linville, M. Urgun-Demirtas, M.M. Mintz, S.W. Snyder, An overview of biogas production and utilization at full-scale wastewater treatment plants (WWTPs) in the United States: challenges and opportunities towards energy-neutral WWTPs, Renewable Sustainable Energy Rev., 50 (2015) 346–362.
  66. G. Silvestre, B. Fernández, A. Bonmatí, Significance of anaerobic digestion as a source of clean energy in wastewater treatment plants, Energy Convers. Manage., 101 (2015) 255–262.
  67. J. De Vrieze, D. Smet, J. Klok, J. Colsen, L.T. Angenent, S.E. Vlaeminck, Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants, Bioresour. Technol., 218 (2016) 1237–1245.
  68. A. Masłoń, J. Czarnota, A. Szaja, J. Szulżyk-Cieplak, G. Łagód, The enhancement of energy efficiency in a wastewater treatment plant through sustainable biogas use: case study from Poland, Energies, 13 (2020) 6056, doi: 10.3390/en13226056.
  69. K. Krupa, Biogas plants at sewage treatment plants, Biogas Market, 1 (2016) 26–29.
  70. T. Rzepecki, A Self-Sufficient Water Supply and Sewage Company – A Dream or a Real Possibility. Proceedings of the 4th Scientific Conference “Energy Security – Pillars and Development Perspective”, Rzeszow, 2019.
  71. D. Đurđević, P. Blecich, Ž. Jurić, Energy recovery from sewage sludge: the case study of Croatia, Energies, 12 (2019) 1927, doi: 10.3390/en12101927.
  72. Polish Oil and Gas Company (PGNiG), Annual Report, Warsaw, 2019. Available at: http://en.pgnig.pl (Accessed on 12 August 2020).
  73. A. Masłoń, S. Pazdro, W. Mroczek, Sewage sludge management in wastewater treatment plant in Mielec, Forum Eksploatatora, 4 (2015) 47–54.
  74. K. Trojanowicz, Ł. Karamus, Energy utilization of biogas as an element of sewage sludge management in the wastewater treatment plant in Krosno, Forum Eksploatatora, 4 (2016) 46–53.
  75. A. Masłoń, Analysis of Energy Consumption at the Rzeszow Wastewater Treatment Plant, Proceedings of the International Conference on Advances in Energy Systems and Environmental Engineering (ASEE17), E3S Web of Conference, Wroclaw, 2017.
  76. A. Masłoń, J. Czarnota, Biogas Production from Sewage Sludge as an Energy Balance Element of the Wastewater Treatment Plant, Proceedings of the VI International Scientific and Technical Conference “Pure Water. Fundamental, Applied and Industrial Aspects”, Kiev, 2019.
  77. A. Masłoń, An Analysis of Sewage Sludge and Biogas Production at the Zamość WWTP, Z. Blikharskyy, P. Koszelnik, P. Mesaros, Eds., International Conference Current Issues of Civil and Environmental Engineering Lviv – Košice – Rzeszów, CEE 2019: Proceedings of CEE 2019, Lecture Notes in Civil Engineering, Vol. 47, Springer, Cham, 2020, pp. 291–298.
  78. P. Szczyrba, A. Masłoń, J. Czarnota, K. Olszewski, Analysis of sewage sludge and biogas-energy management at the Opole wastewater treatment plant, Ecol. Eng., 21 (2020) 26–34.
  79. J.K. Jurczyk, Ł. Jurczyk, D. Wanowicz, Use of municipal sewage sludge as a source of electrical energy, Pol. J. Sustainable Dev., 24 (2020) 53–62.
  80. S. Dąbrowska, A. Masłoń, The Hajdow WWTP in Lublin as an Example of a Facility Generating Green Energy from Sewage Sludge, 3rd National Scientific Conference “Life Sciences for the Benefit of Humans and the Environment,” Lublin, 2021.
  81. A. Grosser, E. Neczaj, Sewage sludge and fat rich materials co-digestion – performance and energy potential, J. Cleaner Prod., 198 (2018) 1076–1089.
  82. A. Szaja, A. Montusiewicz, Enhancing the co-digestion efficiency of sewage sludge and cheese whey using brewery spent grain as an additional substrate, Bioresour. Technol., 291 (2019) 121863, doi: 10.1016/j.biortech.2019.121863.
  83. B. Macherzyński, M.W. Makuła, Biochemical neutralization of coke excess sewage sludge during anaerobic digestion process, Chem. Biochem. Eng. Q., 32 (2018) 239–246.
  84. J.A. Villamil, A.F. Mohedano, J. San Martín, J.J. Rodriguez, M.A. de la Rubia, Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management, Renewable Energy, 146 (2020) 435–443.
  85. E. Wiśniowska, M.W. Makuła, State of the art in technologies of the biogas production increasing during methane digestion of sewage sludge, Civ. Environ. Eng. Rep., 28 (2018) 64–76.
  86. S. Wacławek, K. Grübel, D. Silvestri, V.V.T. Padil, M. Wacławek, M. Cerník, R.S. Varma, Disintegration of wastewater activated sludge (WAS) for improved biogas production, Energies, 12 (2019) 21, doi: 10.3390/en12010021.
  87. M. Zubrowska-Sudol, A. Dzido, A. Garlicka, P. Krawczyk, M. Stępień, K. Umiejewska, J. Walczak, M. Wołowicz, K. Sytek- Szmeichel, Innovative hydrodynamic disintegrator adjusted to agricultural substrates pre-treatment aimed at methane production intensification—CFD modelling and batch tests, Energies, 13 (2020) 4256, doi: 10.3390/en13164256.
  88. Forum Energii, Polish Energy Sector 2050 – 4 Scenarios, Warsaw, 2017.
  89. M. Raudkivi, K. Klein, S. Velling, A. Kivirüüt, T. Tenno, Key Figure Data for Sludge Benchmark Benchmarking the Baltic Sea Region in the Project Iwama – Interactive Water Management, Institute of Chemistry University of Tartu, Tartu, 2018.
  90. Regulation of the Polish Minister of Climate of 24 April 2020 on the Reference Price for Electricity from Renewable Energy Sources in 2020 and the Periods Applicable to Generators that have Won Auctions in 2020. Available at: https://isap.sejm.gov. pl (accessed on 7 January 2021).
  91. Information (No. 4/2021) on the Average Quarterly Price of Electricity Sold on Principles Other Than Those Resulting from Article 49a (1) of the Energy Law, for the 4th Quarter of 2020. Available at: https://www.ure.gov.pl/en (accessed on 25 January 2021).
  92. GUS (Statistics Poland), Transport – Activity Results in 2019, Warsaw, 2020.
  93. The European Biogas Association (EBA) and Gas Infrastructure Europe (GIE), European Biomethane Map 2020, Brussels, 2020.
  94. Draft Regulation of the Polish Minister for Climate and Environment Amending the Regulation on detailed Conditions for the Functioning of the Gas System. Available at: https:// legislacja.rcl.gov.pl/projekt/12342601 (accessed on 14 February 2021).
  95. Ministry of Climate and Environment, Energy Policy of Poland until 2040, Warsaw, 2021.
  96. T. Nevzorova, V. Kutcherov, Barriers to the wider implementation of biogas as a source of energy: a stateof- the-art review, Energy Strategy Rev., 26 (2019) 100414, doi: 10.1016/j.esr.2019.100414.
  97. Biomasa, Raport Biogaz w Polsce, Poznan, 2020.