References

  1. A. Beretta-Blanco, L. Carrasco-Letelier, Relevant factors in the eutrophication of the Uruguay River and the Río Negro, Sci. Total Environ., 761 (2021) 143299, doi: 10.1016/j. scitotenv.2020.143299.
  2. M. Gerke, D. Hübner, J. Schneider, C. Winkelmann, Can top-down effects of cypriniform fish be used to mitigate eutrophication effects in medium-sized European rivers?, Sci. Total Environ., 755 (2021) 142547, doi: 10.1016/j.scitotenv.2020.142547.
  3. V. Dahm, D. Hering, D. Nemitz, W. Graf, A. Schmidt-Kloiber, P. Leitner, A. Melcher, C.K. Feld, Effects of physico-chemistry, land use and hydromorphology on three riverine organism groups: a comparative analysis with monitoring data from Germany and Austria, Hydrobiologia, 704 (2013) 389–415.
  4. D. Hering, R.K. Johnson, S. Kramm, S. Schmutz, K. Szoszkiewicz, P.F.M. Verdonschot, Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress, Freshwater Biol., 51 (2006) 1757–1785.
  5. O. Bilous, S. Barinova, P. Klochenko, Phytoplankton communities in ecological assessment of the Southern Bug River upper reaches (Ukraine), Ecohydrol. Hydrobiol., 12 (2012) 211–230.
  6. N. Hagemann, F. Blumensaat, F. Tavares Wahren, J. Trümper, C. Burmeister, R. Moynihan, N. Scheifhacken, The long road to improving the water quality of the Western Bug River (Ukraine) – a multi-scale analysis, J. Hydrol., 519 (2014) 2436–2447.
  7. V. Yakovlev, Y. Vystavna, D. Diadin, Y. Vergeles, Nitrates in springs and rivers of East Ukraine: distribution, contamination and fluxes, Appl. Geochem., 53 (2015) 71–78.
  8. J. Rozemeijer, R. Noordhuis, K. Ouwerkerk, M. Dionisio Pires, A. Blauw, A. Hooijboer, G.J. van Oldenborgh, Climate variability effects on eutrophication of groundwater, lakes, rivers, and coastal waters in the Netherlands, Sci. Total Environ., 771 (2021) 145366, doi: 10.1016/j.scitotenv.2021.145366.
  9. Y.R. Grokhovska, I.O. Parfeniuk, S.V. Konontsev, T.V. Poltavchenko, Analysis of surface water quality and crustacean diseases in fish (the Ustya River basin, Ukraine), Ukr. J. Ecol., 11 (2021) 94–102.
  10. I.L. Sukhodolska, I.B. Gryuk, Seasonal Variability of the Chemical Composition of Surface Waters of the Ustya River, BIOLOGICAL RESEARCH: Collection of Scientific Works of the V All-Ukrainian Scientific-Practical Conference of Young Scientists and Students, ZhSU Publishing House, I. Franko, Zhytomyr, 2014, pp. 437–440.
  11. S.L. Yun, S.J. Kim, Y.L. Park, S.W. Kang, P.J. Kwak, J.J. Ko, J.H. Ahn, Evaluation of capping materials for the stabilization of contaminated sediments, Mater. Sci. Forum, 544–545 (2007) 565–568.
  12. H.B. Yin, J.C. Zhu, W.Y. Tang, Management of nitrogen and phosphorus internal loading from polluted river sediment using Phoslock® and modified zeolite with intensive tubificid oligochaetes bioturbation, Chem. Eng. J., 353 (2018) 46–55.
  13. A. Siciliano, G.M. Curcio, C. Limonti, Experimental analysis and modeling of nitrate removal through zero-valent magnesium particles, Water, 11 (2019) 1276, doi: 10.3390/w11061276.
  14. D. Burska, D. Pryputniewicz-Flis, A. Bankowska-Sobczak, G. Brenk, T. Woszczyk, The efficiency of P-removal from natural waters with sorbents placed in water permeable nonwovens, IOP Conf. Ser.: Earth Environ. Sci., 362 (2019) 012099.
  15. A. Sieczka, E. Koda, A. Miszkowska, P. Osiński, Identification of Processes and Migration Parameters for Conservative and Reactive Contaminants in the Soil-Water Environment, L. Zhan, Y. Chen, A. Bouazza, Eds., Proceedings of the 8th International Congress on Environmental Geotechnics, Volume 1, The International Congress on Environmental Geotechnics, Environmental Science and Engineering, Springer, Singapore, 2019, pp. 551–559.
  16. F. Haghseresht, S. Wang, D. Do, A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters, Appl. Clay Sci., 46 (2009) 369–375.
  17. M. Kasprzyk, M. Gajewska, Preliminary results from application Phoslock® to remove phosphorus compounds from wastewater, J. Ecol. Eng., 18 (2017) 82–89.
  18. A. Grela, M. Łach, J. Mikuła, An efficacy assessment of phosphate removal from drainage waters by modified reactive material, Materials, 13 (2020) 1190, doi: 10.3390/ma13051190.
  19. K. Finsterle, Overview of Phoslock® Properties and its Use in the Aquatic Environment, Phoslock Europe GmbH, 2014.
  20. M.A. Zeller, M.J. Alperin, The efficacy of Phoslock® in reducing internal phosphate loading varies with bottom water oxygenation, Water Res., 11 (2021) 100095, doi: 10.1016/j. wroa.2021.100095.
  21. L. Zhang, X. Gu, C. Fan, J. Shang, Q. Shen, Z. Wang, J. Shen, Impact of different benthic animals on phosphorus dynamics across the sediment-water interface, J. Environ. Sci., 22 (2010) 1674–1682.
  22. Y. Zhang, L. Cheng, K.E. Tolonen, H. Yin, J. Gao, Z. Zhang, K. Li, Y. Cai, Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China, Sci. Total Environ., 627 (2018) 57–66.
  23. B. Gao, Q. Yue, J. Miao, J. Evaluation of polyaluminium ferric chloride (PAFC) as a composite coagulant for water and wastewater treatment, Water Sci Technol., 47 (2003) 127–132.
  24. L. Chekli, C. Eripret, S.H. Park, S.A.A. Tabatabai, O. Vronska, B. Tamburic, J.H. Kim, Shon, Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water, Sep. Purif. Methods, 175 (2017) 99–106.
  25. S. Ding, Y. Deng, H. Li, C. Fang, N. Gao, W. Chu, Coagulation of iodide-containing resorcinol solution or natural waters with ferric chloride can produce iodinated coagulation by-products, Environ. Sci. Technol., 53 (2019) 12407–12415.
  26. EPA, Acidification and Liming of Swedish Freshwaters, National Swedish Environmental Protection Agency, Solna, 1991.
  27. L. Håkanson, A general management model to optimize lake liming operations, Lakes Reservoirs Res. Manage., 8 (2003) 105–140.
  28. M.J. Brandt, K.M. Johnson, A.J. Elphinston, D.D. Ratnayaka, Chapter 8 – Storage, Clarification and Chemical Treatment, M.J. Brandt, K.M. Johnson, A.J. Elphinston, D.D. Ratnayaka, Eds., Twort’s Water Supply, 7th ed., Butterworth-Heinemann, Boston, 2017, pp. 323–366.
  29. L. Natkaniec-Nowak, M. Dumańska-Słowik, B. Naglik, V. Melnychuk, M. Krynickaya, W. Smoliński, M. Sikorska- Jaworowska, P. Stach, D. Kubica, K. Ładoń, Depositional environment of paleogen amber-bearing qurtz-glauconite sands from Zdolbuniv (Rivne region, NW Ukraine): mineralogical and petrographical evidences, Miner. Resour. Manage., 33 (2017) 45–62.
  30. http://minerals-ua.info/zviti-map.php?rep=mpasp_30&pasport=541
  31. http://minerals-ua.info/zviti-map.php?rep=mpasp_30&pasport=1565
  32. DSTU B.V. 2.1-2-96 State Standard. Bases and Foundations of Buildings and Structures, Soils. Classification. Kyiv, The State Committee of Ukraine, 1997, 47 p.
  33. DSTU B V. 2.7-232:2010 Construction Materials. Dense Natural Sand for Construction Materials, Products, Structures and Operations, Technical Specifications, UKRA34425, 2011, 31 p.
  34. DSTU B.V. 2.7-29-95 Building Materials. Natural Fine Aggregate from Waste Industry for Artificial Building Materials, Products, and Construction Works, Classification. Kyiv. Ministry of Regional Development of Ukraine, 1996, 35 p.
  35. GOST 25584-90 Soils. Methods of Laboratory Determination of Filtration Coefficient.
  36. W. Dickson, Y-W. Brodin, Strategies and Methods for Freshwater Liming, L. Henrikson, Y.W. Brodin, Eds., Liming of Acidified Surface Waters: A Swedish Synthesis, Springer, Berlin, 1995, pp. 81–124.
  37. Y. Trach, V. Kosinov, G. Melnichuk, M. Michel, L. Reczek, The use of saponite tuffs in technologies to improve groundwater quality for drinking, Bulletin of NUWM 2, (2018) 210–221.
  38. L. Reczek, M.M. Michel, Y. Trach, T. Siwiec, M. Tytkowska- Owerko, The kinetics of manganese sorption on Ukrainian tuff and basalt—order and diffusion models analysis, Minerals, 10 (2020) 1065, doi: 10.3390/min10121065.
  39. A. Miszkowska, S. Lenart, E. Koda, Changes of permeability of nonwoven geotextiles due to clogging and cyclic water flow in laboratory conditions, Water, 9 (2017) 660, doi: 10.3390/w9090660.
  40. S. Bajkowski, The inflow length of the stream on the crest of the permeable sill with sharp-crested weir on the upstream slope, Acta Sci. Pol. Architectura, 19 (2020) 73–84.
  41. E. Maciejewska, Redefining cities in view of climatic changes “Sponge City” – examples of solutions in Chinese cities at risk of flooding – Wuhan, Changde and Jinhua, Acta Sci. Pol. Architectura, 19 (2020) 11–19.