References

  1. European Union’s Thematic Strategy for Soil Protection (EC, 2006, 2012).
  2. R. Spaccini, A. Piccolo, Carbon Sequestration in Soils by Hydrophobic Protection and in situ Catalyzed Photopolymerization of Soil Organic Matter (SOM): Chemical and Physical–Chemical Aspects of SOM in Field Plots, A. Piccolo, Ed., Carbon Sequestration in Agricultural Soils, Berlin, Heidelberg, 2012, pp. 61–105
  3. R. Spaccini, A. Piccolo, Amendments with humified compost effectively sequester organic carbon in agricultural soils, Land Degrad. Dev., 31 (2020) 1206–1216.
  4. R. van Herwijnen, T. Laverye, J. Poole, M.E. Hodson, T.R. Hutchings, The effect of organic materials on the mobility and toxicity of metals in contaminated soils, Appl. Geochem., 22 (2007) 2422–2434.
  5. M. Farrell, W.T. Perkins, P.J. Hobbs, G.W. Griffith, D.L. Jones, Migration of heavy metals in soil as influenced by compost amendments, Environ. Pollut., 158 (2010) 55–64.
  6. D. Kulikowska, E. Klimiuk, Organic matter transformations and kinetics during sewage sludge composting in a two-stage system, Bioresour. Technol., 102 (2011) 10951–10958.
  7. D. Kulikowska, S. Sindrewicz, Effect of barley straw and coniferous bark on humification process during sewage sludge composting, Waste Manage., 79 (2018) 207–213.
  8. D. Kulikowska, Kinetics of organic matter removal and humification progress during sewage sludge composting, Waste Manage., 49 (2016) 196–203.
  9. K. Boratyński, K. Wilk, Studies on organic matter, Part IV. Fractionation of humic substances using complexing solutions and diluted alkali, Soil Sci. Ann., 1 (1965) 53–63 (in Polish).
  10. D. Kulikowska, B. Klik, Z.M. Gusiatin, K. Hajdukiewicz, Characteristic of humic substances from municipal sewage sludge: a case study. Desal. Water Treat., 144 (2019) 57–64.
  11. J.A. Alburquerque, J. Gonzálvez, G. Tortosa, G.A. Baddi, J. Cegarra, Evaluation of “alperujo” composting based on organic matter degradation, humification and compost quality, Biodegradation, 20 (2009) 257–270.
  12. M. Tuomela, M. Vikman, A. Hatakka, M. Itävaara, Biodegradation of lignin in a compost environment: a review, Bioresour. Technol., 72 (2000) 169–183.
  13. M. Tuomela, Degradation of Lignin and Other 14C-labelled Compounds in Compost and Soil with an Emphasis on White-rot Fungi, Academic Dissertation in Microbiology, Department of Applied Chemistry and Microbiology Division of Microbiology University of Helsinki, 2002.
  14. M. Fersi, K. Mbarki, K. Gargouri, T. Mecchichi, R. Hachicha, Assessment of organic matter biodegradation and physicochemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation, Environ. Eng. Res., 24 (2019) 670–679.
  15. R. Riffaldi, F. Sartori, R. Levi-Minzi, Humic substances in sewage sludges, Environ. Pollut., 2 (1982) 139–146.
  16. H.A. Aiwa, M.A. Tabatabai, Decomposition of different organic materials in soils, Biol. Fertil. Soils, 18 (1994) 175–182.
  17. O.S. Iakimenko, S.V. Velichenko, Sewage Sludge Organic Matter Transformation in Soil in Incubation Experiment, J. Drozd, S.S. Gonet, N. Senesi, J. Weber, Eds., The Role of Humic Substances in the Ecosystems and in Environmental Protection, IHSS Polish Society of Humic Substances, Wrocław, Poland, 1997, pp. 915–919.
  18. B. Cheftez, Z. Kerem, Y. Chen, Y. Hadar, Isolation and partial characterization of laccase from a thermophilic composted municipal solid waste, Soil Biol. Biochem., 30 (1998) 1091–1098.
  19. J. Šnajdr, P. Baldrian, Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor, Folia Microbiol., 52 (2007) 498–502.
  20. D. Garcia, M.P. Bernal, A. Navarro, Comparative evaluation of methods employing alkali and sodium pyrophosphate to extract humic substances from peat, Commun. Soil Sci. Plant Anal., 24 (1993) 1481–1494.
  21. E. Gieguzynska, A. Amine-Khodja, O.A. Trubetskoj, O.E. Trubetskaya, G. Guyot, A. ter Halle, D. Golebiowska, C. Richard, Compositional differences between soil humic acids extracted by various methods as evidenced by photosensitizing and electrophoretic properties, Chemosphere, 75 (2009) 1082–1088.
  22. X. Liu, Y. Hou, Z. Li, Z. Yu, J. Tang, Y. Wang, S. Zhou, Hyperthermophilic composting of sewage sludge accelerates humic acid formation: elemental and spectroscopic evidence, Waste Manage., 103 (2020) 342–351.
  23. H. An, T. Xiao, H. Fan, D. Wei, Molecular characterization of a novel thermostable laccase PPLCC2 from the brown rot fungus Postia placenta MAD-698-R, Electron. J. Biotechnol., 18 (2015) 451–458.
  24. S. Amir, M. Hafidi, G. Merlina, J.-C. Revel, Structural changes in lipid-free humic acids during composting of sewage sludge, Int. Biodeterior. Biodegrad., 55 (2005) 239–246.
  25. P. Campitelli, P. Ceppi, Effects of composting technologies on the chemical and physicochemical properties of humic acids, Geoderma, 144 (2008) 325–333.
  26. S. Amir, F. Benlboukht, N. Cancian, P. Winterton, M. Hafidi, Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting, J. Hazard. Mater., 160 (2008) 448–455.
  27. Z. Droussi, V. D’Orazio, M. Hafidi, A. Ouatmane, Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products, J. Hazard. Mater., 163 (2009) 1289–1297.
  28. D. Kalembasa, M. Becher, B. Bik, Właściwości materii organicznej podłoża po prawie pieczarki, Acta Agrophysica, 19 (2012) 713–723 (in Polish).
  29. M. Becher, B. Symanowicz, D. Jaremko, E. Trzcińska, Chemical composition of compost from municipal waste in the context of a use as fertilizer, Acta Agroph., 25 (2018) 329–341.
  30. J. Kwiatkowska-Malina, The comparison of the structure of humic acids from soil amended with different sources of organic matter, Pol. J. Soil Sci., 48 (2015) XLVIII/1, doi: 10.17951/ pjss/2015.48.1.57.
  31. J.C. Garcia-Gil, S. Ceppi, M. Valesca, A. Polo, N. Sensei, Longterm effects of amendment with municipal solid waste compost on the elemental and acid functional group composition and pH-buffer capacity of soil humic acid, Geoderma, 121 (2004) 135–142.
  32. C. Steelink, Implications of Elemental Characteristics of Humic Substances, G.R. Aiken, D.M. McKnight, R.L. Wershaw, P. MacCarthy, Eds., Humic Substances in Soil, Sediment and Water, Wiley, New York, 1985, pp. 457–476.
  33. F.J. Stevenson, Humus Chemistry, Genesis, Composition, Reactions, John Wiley Sons Inc., Canada, 1994.
  34. B. Dębska, M. Drąg, E. Tobiasowa, Effect of post-harvest residue of maize, rapeseed, and sunflower on humic acids properties in various silos, Pol. J. Environ. Stud., 21 (2012) 603–613.
  35. S.S. Gonet, Z. Zawalska, Wpływ nawożenia ściekami krochmalniczymi na właściwości kwasów huminowych, Zesz. Probl. Post. Nauk Roln., 411 (1993) 259–268 (in Polish).
  36. J. Kwiatkowska-Malina, Analysis of humus substances of soil after application of lignite, Prace Naukowe Politechniki Warszawskiej, Geodezja, 45 (2009) 3–153 (in Polish).