References
- J. Alcamo, P. Döll, F. Kaspar, S. Siebert, Global Change and
Global Scenarios of Water Use and Availability: an Application
of WaterGAP 1.0., University of Kassel, Kassel, Germany, 1997.
- R.K. Chakraborti, J. Kaur, H. Kaur, Water shortage challenges
and a way forward in India, J. AWWA,
111 (2019) 42–49.
- A. Subramani, J.G. Jacangelo, Emerging desalination
technologies for water treatment: a critical review, Water Res.,
75 (2015) 164–187.
- A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Advances in
seawater desalination technologies, Desalination, 221 (2008)
47–69.
- S. Zhou, Y. Guo, X. Mu, S. Shen, Effect of design parameters on
thermodynamic losses of the heat transfer process in LT-MEE
desalination plant, Desalination, 375 (2015) 40–47.
- L. Gong, S. Shen, H. Liu, X. Mu, X. Chen, Three-dimensional
heat transfer coefficient distributions in a large horizontal-tube
falling film evaporator, Desalination, 357 (2015) 104–116.
- A. Ophir, F. Lokiec, Advanced MED process for most economical
sea water desalination, Desalination, 182 (2005) 187–198.
- Y. Xue, X. Du, Z. Ge, L. Yang, Study on multi-effect distillation
of seawater with low-grade heat utilization of thermal power
generating unit, Appl. Therm. Eng., 141 (2018) 589–599.
- A. Rezaei, A. Naserbeagi, G. Alahyarizadeh, M. Aghaei,
Economic evaluation of Qeshm island MED-desalination plant
coupling with different energy sources including fossils and
nuclear power plants, Desalination, 422 (2017) 101–112.
- J. Leblanc, J. Andrews, Low-Temperature Multi-Effect
Evaporation Desalination Systems Coupled with
Salinity-
Gradient Solar Ponds, Proceedings of ISES World Congress
2007, Springer, Berlin, Heidelberg, 2007,
pp. 2151–2157.
- H.T. El-Dessouky, H.M. Ettouney, F. Mandani, Performance of
parallel feed multiple effect evaporation system for seawater
desalination, Appl. Therm. Eng., 20 (2000) 1679–1706.
- S. Zhou, L. Gong, X. Liu, S. Shen, Mathematical modeling and
performance analysis for multi-effect evaporation/multi-effect
evaporation with thermal vapor compression desalination
system, Appl. Therm. Eng., 159 (2019) 113759, doi: 10.1016/j.
applthermaleng.2019.113759.
- H. Liu, S.Q. Shen, L.Y. Gong, S. Chen, Shell-side two-phase
pressure drop and evaporation temperature drop on falling
film evaporation in a rotated square bundle, Appl. Therm. Eng.,
69 (2014) 214–220.
- F. Tahir, A. Mabrouk, M. Koç, Influence of co-current vapor
flow on falling film over horizontal tube, Int. J. Therm. Sci.,
159 (2021) 106614, doi: 10.1016/j.ijthermalsci.2020.106614.
- F. Tahir, A. Mabrouk, M. Koç, Impact of surface tension and
viscosity on falling film thickness in multi-effect desalination
(MED) horizontal tube evaporator, Int. J. Therm. Sci., 150 (2020)
106235, doi: 10.1016/j.ijthermalsci.2019.106235.
- L. Yang, Y. Liu, Y. Yang, S. Shen, Microscopic mechanisms
of heat transfer in horizontal-tube falling film evaporation,
Desalination, 394 (2016) 64–71, doi: 10.1016/j.desal.2016.04.014.
- L. Yang, Z. Xu, X. Zhang, S. Shen, Characterization of the
microscopic mechanics in falling film evaporation outside a
horizontal tube, Desal. Water Treat., 55 (2015) 3330–3335.
- M. Prithiviraj, M.J. Andrews, Comparison of a three-dimensional
numerical model with existing methods for prediction of flow
in shell-and-tube heat exchangers, Heat Transfer Eng., 20 (1999)
15–19.
- X. Gao, C. Zhang, J. Wei, B. Yu, Numerical simulation of heat
transfer performance of an air-cooled steam condenser in a
thermal power plant, Heat Transfer Eng., 45 (2009) 1423–1433.
- F. Ansys, ANSYS Fluent Theory Guide, ANSYS Inc., USA,
2013, pp. 724–746. Available at: http://www.afs.enea.it/project/
neptunius/docs/fluent/html/th/main_pre.htm
- W.T. Sha, C.I. Yang, T.T. Kao, S.M. Cho, Multidimensional
numerical modeling of heat exchangers, J. Heat Transfer,
104 (1982) 417–425.
- M. Prithiviraj, M.J. Andrews, Three dimensional numerical
simulation of shell-and-tube heat exchangers. Part I: foundation
and fluid mechanics, Numer. Heat Transfer, Part A, 33 (1998)
799–816.
- M. Prithiviraj, M.J. Andrews, Three-dimensional numerical
simulation of shell-and-tube heat exchangers. Part II: Heat
transfer, Numer. Heat Transfer, Part A, 33 (1998) 817–828.
- Y. Zhou, Y.L. Cheng, N. Zhang, H.B. Shi, Numerical simulation
study of novel air-cooled condenser with lateral air supply,
Case Stud. Therm. Eng., 13 (2019) 100354, doi: 10.1016/j.
csite.2018.11.005.
- H. Al-Fulaij, A. Cipollina, G. Micale, H. Ettouney, D. Bogle,
Eulerian-lagrangian modeling and computational fluid
dynamics simulation of wire mesh demisters in MSF plants,
Desalination, 385 (2016) 148–157.
- T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-є
eddy viscosity model for high reynolds number turbulent
flows, Comput. Fluids, 24 (1995) 227–238.
- A.A. Zhukauskas, Convective Transfer in Heat Exchangers,
Science Press, Moscow, 1982.
- S. Shen, L. Gong, H. Liu, X. Mu, R. Liu, Characteristic study
of steam maldistribution in horizontal-tube falling film
evaporators, Appl. Therm. Eng., 75 (2015) 635–647.
- S. Shen, R. Liu, Y. Yang, X. Liu, J. Chen, Condensation character
of a stratified flow inside a horizontal tube, Desal. Water Treat.,
33 (2011) 218–223.
- L. Gong, S. Shen, H. Liu, X. Mu, Parametric distributions of
a horizontal-tube falling film evaporator for desalination,
Desal. Water Treat., 57 (2016) 11699–11711.
- C. Schär, A generalization of Bernoulli’s theorem, J. Atmos. Sci.,
50 (1993) 1437–1443.
- Y. She, W. Chan, F. Chang, K. Guo, Y. Zhang, H. Li, Experimental
investigation on the characteristics of pressure drop and air/
vapor flow over horizontal tube bundle with water-spray
falling film, Desal. Water Treat., 216 (2021) 34–46.
- H. Blasius, Das aehnlichkeitsgesetz bei reibungsvorgängen in
flüssigkeiten, Mitteilungen Über Forschungsarbeiten Auf Dem
Gebiete Des Ingenieurwesens, Springer, Berlin, Heidelberg,
1913, pp. 1–41.
- R.W. Lockhart, R.C. Martinelli, Proposed correlation of data
for isothermal two-phase two component flow in pipes, Chem.
Eng. Prog., 45 (1949) 39–48.