References

  1. J. Alcamo, P. Döll, F. Kaspar, S. Siebert, Global Change and Global Scenarios of Water Use and Availability: an Application of WaterGAP 1.0., University of Kassel, Kassel, Germany, 1997.
  2. R.K. Chakraborti, J. Kaur, H. Kaur, Water shortage challenges and a way forward in India, J. AWWA, 111 (2019) 42–49.
  3. A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: a critical review, Water Res., 75 (2015) 164–187.
  4. A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Advances in seawater desalination technologies, Desalination, 221 (2008) 47–69.
  5. S. Zhou, Y. Guo, X. Mu, S. Shen, Effect of design parameters on thermodynamic losses of the heat transfer process in LT-MEE desalination plant, Desalination, 375 (2015) 40–47.
  6. L. Gong, S. Shen, H. Liu, X. Mu, X. Chen, Three-dimensional heat transfer coefficient distributions in a large horizontal-tube falling film evaporator, Desalination, 357 (2015) 104–116.
  7. A. Ophir, F. Lokiec, Advanced MED process for most economical sea water desalination, Desalination, 182 (2005) 187–198.
  8. Y. Xue, X. Du, Z. Ge, L. Yang, Study on multi-effect distillation of seawater with low-grade heat utilization of thermal power generating unit, Appl. Therm. Eng., 141 (2018) 589–599.
  9. A. Rezaei, A. Naserbeagi, G. Alahyarizadeh, M. Aghaei, Economic evaluation of Qeshm island MED-desalination plant coupling with different energy sources including fossils and nuclear power plants, Desalination, 422 (2017) 101–112.
  10. J. Leblanc, J. Andrews, Low-Temperature Multi-Effect Evaporation Desalination Systems Coupled with
    Salinity- Gradient Solar Ponds, Proceedings of ISES World Congress 2007, Springer, Berlin, Heidelberg, 2007,
    pp. 2151–2157.
  11. H.T. El-Dessouky, H.M. Ettouney, F. Mandani, Performance of parallel feed multiple effect evaporation system for seawater desalination, Appl. Therm. Eng., 20 (2000) 1679–1706.
  12. S. Zhou, L. Gong, X. Liu, S. Shen, Mathematical modeling and performance analysis for multi-effect evaporation/multi-effect evaporation with thermal vapor compression desalination system, Appl. Therm. Eng., 159 (2019) 113759, doi: 10.1016/j. applthermaleng.2019.113759.
  13. H. Liu, S.Q. Shen, L.Y. Gong, S. Chen, Shell-side two-phase pressure drop and evaporation temperature drop on falling film evaporation in a rotated square bundle, Appl. Therm. Eng., 69 (2014) 214–220.
  14. F. Tahir, A. Mabrouk, M. Koç, Influence of co-current vapor flow on falling film over horizontal tube, Int. J. Therm. Sci., 159 (2021) 106614, doi: 10.1016/j.ijthermalsci.2020.106614.
  15. F. Tahir, A. Mabrouk, M. Koç, Impact of surface tension and viscosity on falling film thickness in multi-effect desalination (MED) horizontal tube evaporator, Int. J. Therm. Sci., 150 (2020) 106235, doi: 10.1016/j.ijthermalsci.2019.106235.
  16. L. Yang, Y. Liu, Y. Yang, S. Shen, Microscopic mechanisms of heat transfer in horizontal-tube falling film evaporation, Desalination, 394 (2016) 64–71, doi: 10.1016/j.desal.2016.04.014.
  17. L. Yang, Z. Xu, X. Zhang, S. Shen, Characterization of the microscopic mechanics in falling film evaporation outside a horizontal tube, Desal. Water Treat., 55 (2015) 3330–3335.
  18. M. Prithiviraj, M.J. Andrews, Comparison of a three-dimensional numerical model with existing methods for prediction of flow in shell-and-tube heat exchangers, Heat Transfer Eng., 20 (1999) 15–19.
  19. X. Gao, C. Zhang, J. Wei, B. Yu, Numerical simulation of heat transfer performance of an air-cooled steam condenser in a thermal power plant, Heat Transfer Eng., 45 (2009) 1423–1433.
  20. F. Ansys, ANSYS Fluent Theory Guide, ANSYS Inc., USA, 2013, pp. 724–746. Available at: http://www.afs.enea.it/project/ neptunius/docs/fluent/html/th/main_pre.htm
  21. W.T. Sha, C.I. Yang, T.T. Kao, S.M. Cho, Multidimensional numerical modeling of heat exchangers, J. Heat Transfer, 104 (1982) 417–425.
  22. M. Prithiviraj, M.J. Andrews, Three dimensional numerical simulation of shell-and-tube heat exchangers. Part I: foundation and fluid mechanics, Numer. Heat Transfer, Part A, 33 (1998) 799–816.
  23. M. Prithiviraj, M.J. Andrews, Three-dimensional numerical simulation of shell-and-tube heat exchangers. Part II: Heat transfer, Numer. Heat Transfer, Part A, 33 (1998) 817–828.
  24. Y. Zhou, Y.L. Cheng, N. Zhang, H.B. Shi, Numerical simulation study of novel air-cooled condenser with lateral air supply, Case Stud. Therm. Eng., 13 (2019) 100354, doi: 10.1016/j. csite.2018.11.005.
  25. H. Al-Fulaij, A. Cipollina, G. Micale, H. Ettouney, D. Bogle, Eulerian-lagrangian modeling and computational fluid dynamics simulation of wire mesh demisters in MSF plants, Desalination, 385 (2016) 148–157.
  26. T.-H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu, A new k-є eddy viscosity model for high reynolds number turbulent flows, Comput. Fluids, 24 (1995) 227–238.
  27. A.A. Zhukauskas, Convective Transfer in Heat Exchangers, Science Press, Moscow, 1982.
  28. S. Shen, L. Gong, H. Liu, X. Mu, R. Liu, Characteristic study of steam maldistribution in horizontal-tube falling film evaporators, Appl. Therm. Eng., 75 (2015) 635–647.
  29. S. Shen, R. Liu, Y. Yang, X. Liu, J. Chen, Condensation character of a stratified flow inside a horizontal tube, Desal. Water Treat., 33 (2011) 218–223.
  30. L. Gong, S. Shen, H. Liu, X. Mu, Parametric distributions of a horizontal-tube falling film evaporator for desalination, Desal. Water Treat., 57 (2016) 11699–11711.
  31. C. Schär, A generalization of Bernoulli’s theorem, J. Atmos. Sci., 50 (1993) 1437–1443.
  32. Y. She, W. Chan, F. Chang, K. Guo, Y. Zhang, H. Li, Experimental investigation on the characteristics of pressure drop and air/ vapor flow over horizontal tube bundle with water-spray falling film, Desal. Water Treat., 216 (2021) 34–46.
  33. H. Blasius, Das aehnlichkeitsgesetz bei reibungsvorgängen in flüssigkeiten, Mitteilungen Über Forschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens, Springer, Berlin, Heidelberg, 1913, pp. 1–41.
  34. R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase two component flow in pipes, Chem. Eng. Prog., 45 (1949) 39–48.