References

  1. K.U. Bhaskar, Y.R. Murthy, M.R. Raju, S. Tiwari, J.K. Srivastava, N. Ramakrishnan, CFD simulation and experimental validation studies on hydrocyclone, Miner. Eng., 20 (2007) 60–71.
  2. M. Zandie, A. Kazemi, M. Ahmadi, M.K. Moraveji, A CFD investigation into the enhancement of down-hole de-oiling hydro cyclone performance, J. Pet. Sci. Technol., 199 (2021) 108352, doi: 10.1016/j.petrol.2021.108352.
  3. A. Belaidi, M. Thew, The effect of oil and gas content on the controllability and separation in a de-oiling hydrocyclone, Chem. Eng. Res. Des., 81 (2003) 305–314.
  4. C.L. Karr, D.A. Stanley, B. McWhorter, Optimization of hydrocyclone operation using a geno-fuzzy algorithm, Comput. Methods Appl. Mech. Eng., 186 (2000) 517–530.
  5. M. Karimi, A. Dehghani, A. Nezamalhosseini, S. Talebi, Prediction of hydrocyclone performance using artificial neural networks, J. S. Afr. Inst. Min. Metall., 110 (2010) 207–212.
  6. S. van Loggenberg, G. van Schoor, K. Uren, A. van der Merwe, Hydrocyclone cut-size estimation using artificial neural networks, IFAC-PapersOnLine, 49 (2016) 996–1001.
  7. C. Fung, K. Wong, H. Eren, Developing a Generalised Neural-Fuzzy Hydrocyclone Model for Particle Separation, IMTC/98 Conference Proceedings. IEEE Instrumentation and Measurement Technology Conference. Where Instrumentation is Going (Cat. No.98CH36222), IEEE, St. Paul, MN, USA, 1998.
  8. H. Eren, C.C. Fung, K.W. Wong, A. Gupta, Use of Artificial Neural Networks in Estimation of Hydrocyclone Parameters with Unusual Input Variables, Quality Measurement: The Indispensable Bridge between Theory and Reality (No Measurements? No Science! Joint Conference – 1996: IEEE Instrumentation and Measurement Technology Conference and IMEKO Tec, IEEE, Brussels, Belgium, 1996.
  9. K.W. Wong, Y.S. Ong, H. Eren, C.C. Fung, Hybrid Fuzzy Modelling Using Memetic Algorithm for Hydrocyclone Control, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), IEEE, Shanghai, China, 2004.
  10. S. Mohanty, S.K. Das, A.K. Majumder, Artificial neural network modeling and experimental investigation to characterize the dewatering performance of a hydrocyclone, Miner. Process. Extr. Metall., (2019) 1–13, doi:10.1080/25726641.2019.1680177.
  11. B. Yang, J. Wang, X. Zhang, T. Yu, W. Yao, H. Shu, F. Zeng, L. Sun, Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification, Energy Convers. Manage., 208 (2020) 112595.
  12. J.A. Jervase, H. Bourdoucen, A. Al-Lawati, Solar cell parameter extraction using genetic algorithms, Meas. Sci. Technol., 12 (2001) 1922.
  13. K. Ishaque, Z. Salam, An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE), Sol. Energy, 85 (2011) 2349–2359.
  14. A. Askarzadeh, A. Rezazadeh, Artificial bee swarm optimization algorithm for parameters identification of solar cell models, Appl. Energy, 102 (2013) 943–949.
  15. S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016) 51–67.
  16. Z. Wu, D. Yu, X. Kang, Parameter identification of photovoltaic cell model based on improved ant lion optimizer, Energy Convers. Manage., 151 (2017) 107–115.
  17. M.A. Awadallah, Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data, Energy Convers. Manage., 113 (2016) 312–320.
  18. B. Yang, X. Zhang, T. Yu, H. Shu, Z. Fang, Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine, Energy Convers. Manage., 133 (2017) 427–443.
  19. K. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag., 22 (2002) 52–67.
  20. A. Diabat, D. Kannan, M. Kaliyan, D. Svetinovic, An optimization model for product returns using genetic algorithms and artificial immune system, Resour. Conserv. Recycl., 74 (2013) 156–169.
  21. B. Yang, L. Zhong, X. Zhang, H. Shu, T. Yu, H. Li, L. Jiang, L. Sun, Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition, J. Cleaner Prod., 215 (2019) 1203–1222.
  22. X. Yuan, Y. Yang, H. Wang, Improved parallel chaos optimization algorithm, Appl. Math. Comput., 219 (2012) 3590–3599.
  23. N. Pourmousa, S.M. Ebrahimi, M. Malekzadeh, M. Alizadeh, Parameter estimation of photovoltaic cells using improved Lozi map based chaotic optimization algorithm, Sol. Energy, 180 (2019) 180–191.
  24. X. Yuan, J. Zhao, Y. Yang, Y. Wang, Hybrid parallel chaos optimization algorithm with harmony search algorithm, Appl. Soft Comput., 17 (2014) 12–22.
  25. M. AlRashidi, M. AlHajri, K. El-Naggar, A. Al-Othman, A new estimation approach for determining the I–V characteristics of solar cells, Sol. Energy, 85 (2011) 1543–1550.
  26. R.C.M. Gomes, M.A. Vitorino, M.B. de Rossiter Correa, D.A. Fernandes, R. Wang, Shuffled complex evolution on photovoltaic parameter extraction: a comparative analysis, IEEE Trans. Sustainable Energy, 8 (2016) 805–815.
  27. K. Yu, J. Liang, B. Qu, X. Chen, H. Wang, Parameters identification of photovoltaic models using an improved JAYA optimization algorithm, Energy Convers. Manage., 150 (2017) 742–753.
  28. K.M. El-Naggar, M. AlRashidi, M. AlHajri, A. Al-Othman, Simulated annealing algorithm for photovoltaic parameters identification, Sol. Energy, 86 (2012) 266–274.
  29. S.M. Hosseini, K. Shahbazi, M.R. Khosravi Nikou, A CFD simulation of the parameters affecting the performance of downhole de-oiling hydrocyclone, Iran. J. Oil Gas Sci. Technol., 4 (2015) 77–93.
  30. M. Bennett, R.A. Williams, Monitoring the operation of an oil/water separator using impedance tomography, Miner. Eng., 17 (2004) 605–614.
  31. A. Hoffmann, M. De Groot, W. Peng, H. Dries, J. Kater, Advantages and risks in increasing cyclone separator length, AlChE J., 47 (2001) 2452–2460.
  32. G. Young, W. Wakley, D. Taggart, S. Andrews, J. Worrell, Oil-water separation using hydrocyclones:
    an experimental search for optimum dimensions, J. Pet. Sci. Eng., 11 (1994) 37–50.
  33. S. Bernardo, M. Mori, A. Peres, R. Dionisio, 3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles, Powder Technol., 162 (2006) 190–200.
  34. C. Gomez, J. Caldentey, S. Wang, L. Gomez, R. Mohan, O. Shoham, Oil-Water Separation in Liquid–liquid Hydrocyclones (LLHC)- experiment and Modeling, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, New Orleans, Louisiana, 2001.
  35. J.A. Delgadillo, R.K. Rajamani, A comparative study of three turbulence-closure models for the hydrocyclone problem, Int. J. Miner. Process., 77 (2005) 217–230.
  36. G. Patra, S. Chakraborty, B. Meikap, Role of vortex finder depth on pressure drop and performance efficiency in a ribbed hydrocyclone, S. Afr. J. Chem. Eng., 25 (2018) 103–109.
  37. K. Elsayed, C. Lacor, Analysis and Optimisation of Cyclone Separators Geometry Using RANS and LES Methodologies, M.O. Deville, J.-L. Estivalezes, V. Gleize, T.-H. Lê, M. Terracol, S. Vincent, Eds., Turbulence and Interactions, Proceedings of the TI 2012 Conference, Springer, Berlin, Heidelberg, 2014, pp. 65–74.
  38. T. Monredon, K. Hsieh, R.K. Rajamani, Fluid flow model of the hydrocyclone: an investigation of device dimensions, Int. J. Miner. Process., 35 (1992) 65–83.
  39. M. Bohnet, Influence of the gas temperature on the separation efficiency of aerocyclones, Chem. Eng. Process. Process Intensif., 34 (1995) 151–156.
  40. S.M. Vahedi, F. Parvaz, R. Rafee, M. Khandan Bakavoli, Computational fluid dynamics simulation of the flow patterns and performance of conventional and dual-cone gas-particle cyclones, Int. J. Heat Mass Transfer Res., 5 (2018) 27–38.
  41. D.A. Colman, M.T. Thew, Cyclone Separator, Google Patents, 1980.
  42. W.H. Koch, W. Light, New design approach boosts cyclone efficiency, Chem. Eng., 84 (1977) 80–88.
  43. M.R. Jadhav, Design of cyclone and study of its performance parameters, Int. J. Mech. Eng. Rob. Res., 3 (2014) 247.
  44. B.R.R. Dere, G.M. Babu, A.D. Sree, S.R. Rao, Design and analysis of cyclone dust separator, Int. J. Eng. Res. Technol. (IJERT), 3 (2014) 2278–0181.
  45. B. Zhao, H. Shen, Y. Kang, Development of a symmetrical spiral inlet to improve cyclone separator performance, Powder Technol., 145 (2004) 47–50.
  46. R. Xiang, S. Park, K. Lee, Effects of cone dimension on cyclone performance, J. Aerosol Sci., 32 (2001) 549–561.
  47. A. Gil, L.M. Romeo, C. Cortes, Effect of the solid loading on a PFBC cyclone with pneumatic extraction of solids, Chem. Eng. Technol., 25 (2002) 407–415.
  48. P. Soison, P. Supachart, P. Wongsarivej, Effect of Feed-Flow Rate in a Solid-Liquid Hydrocyclone Based on Total Solid Recovery Equation, P. Pinwanich, A. Soisungval, Eds., Key Engineering Materials (Vol. 751, pp. 173–179), Trans Tech Publications Ltd., Switzerland, 2017.
  49. A.B. Sinker, M. Humphris, N. Wayth, Enhanced Deoiling Hydrocyclone Performance Without Resorting to Chemicals, SPE Offshore Europe Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, Aberdeen, United Kingdom, 1999.
  50. A.C. Hoffman, L.E. Stein, A.C. Hoffmann, L.E. Stein, Gas Cyclones and Swirl Tubes: Principles, Design, and Operation, Springer-Verlag, Berlin, Heidelberg, 2002.
  51. N. Kharoua, L. Khezzar, Z. Nemouchi, Hydrocyclones for de-oiling applications—a review, J. Pet. Sci. Technol., 28 (2010) 738–755.
  52. A. Lynch, T. Rao, K. Prisbrey, The influence of hydrocyclone diameter on reduced-efficiency curves, Int. J. Miner. Process., 1 (1974) 173–181.
  53. W. Wei, Y. Jiu-yang, Z. Xiao-tao, L. Xia, L. Wei, A new method for predicting the hydrocyclone efficiency with the light dispersed phase, Energy Procedia, 105 (2017) 4428–4435.
  54. A.C. Stone, Oil/Water Separation in a Novel Cyclone Separator, School of Engineering (SoE) (2001–July 2014), Library of University for Ph.D. and Masters Theses (SoE), Cranfield University, England, 2007.
  55. J. Martinez-Benet, J. Casal, Optimization of parallel cyclones, Powder Technol., 38 (1984) 217–221.
  56. J.-Y. Lin, R.-M. Wu, Three output membrane hydrocyclone: classification and filtration, Molecules, 24 (2019) 1116, doi: 10.3390/molecules24061116.
  57. R. Razavi, A. Sabaghmoghadam, A. Bemani, A. Baghban, K.-w. Chau, E. Salwana, Application of ANFIS and LSSVM strategies for estimating thermal conductivity enhancement of metal and metal oxide based nanofluids, Eng. Appl. Comput. Fluid Mech., 13 (2019) 560–578.
  58. A. Bemani, Q. Xiong, A. Baghban, S. Habibzadeh, A.H. Mohammadi, M.H. Doranehgard, Modeling of cetane number of biodiesel from fatty acid methyl ester (FAME) information using GA-, PSO-, and HGAPSO-LSSVM models, Renewable Energy, 150 (2020) 924–934.
  59. E. Khamehchi, A. Bemani, Prediction of pressure in different two-phase flow conditions: machine learning applications, Measurement, 173 (2021) 108665, doi: 10.1016/j. measurement.2020.108665.
  60. H. Azimi, H. Bonakdari, I. Ebtehaj, Sensitivity analysis of the factors affecting the discharge capacity of side weirs in trapezoidal channels using extreme learning machines, Flow Meas. Instrum., 54 (2017) 216–223.
  61. Y.-F. Chang, Study of the Flow in a Hydrocyclone Using Positron Emission Particle Tracking and Computational Fluid Dynamics Simulation, Research Institution in Bergen, The University of Bergen, Faculty of Mathematics and Natural Sciences, Department of Physics and Technology, Thesis Libraries, Norway, 2016.
  62. K.A. Hashmi, H.A. Hamza, J.C. Wilson, CANMET hydrocyclone: an emerging alternative for the treatment of oily waste streams, Miner. Eng., 17 (2004) 643–649.
  63. J. Sola, J. Sevilla, Importance of input data normalization for the application of neural networks to complex industrial problems, IEEE Trans. Nucl. Sci., 44 (1997) 1464–1468.
  64. D. Singh, B. Singh, Investigating the impact of data normalization on classification performance, Appl. Soft Comput., 97 (2020) 105524, doi: 10.1016/j.asoc.2019.105524.
  65. A. Bemani, A. Baghban, A. Mosavi, Estimating CO2-brine diffusivity using hybrid models of ANFIS and evolutionary algorithms, Eng. Appl. Comput. Fluid Mech., 14 (2020) 818–834.
  66. T. Hill, L. Marquez, M. O’Connor, W. Remus, Artificial neural network models for forecasting and decision making, Int. J. Forecasting, 10 (1994) 5–15.
  67. E. Grossi, M. Buscema, Introduction to artificial neural networks, Eur. J. Gastroenterol. Hepatol., 19 (2007) 1046–1054.
  68. B. Lang, Monotonic Multi-Layer Perceptron Networks as Universal Approximators, International Conference on Artificial Neural Networks, Springer, 2005.
  69. J.A. Bullinaria, Radial Basis Function Networks: Introduction, Neutral Computation: Lecture, 2015.
  70. M. Abdi-Khanghah, A. Bemani, Z. Naserzadeh, Z. Zhang, Prediction of solubility of N-alkanes in supercritical CO2 using RBF-ANN and MLP-ANN, J. CO2 Util., 25 (2018) 108–119.
  71. S. Chen, S. Billings, P. Grant, Non-linear system identification using neural networks, Int. J. Control, 51 (1990) 1191–1214.
  72. R. Eberhart, J. Kennedy, Particle Swarm Optimization, Proceedings of ICNN’95 - International Conference on Neural Networks, IEEE, Perth, WA, Australia, 1995.
  73. J. Kennedy, Particle Swarm Optimization, C. Sammut, G.I. Webb, Eds., Encyclopedia of Machine Learning, Springer, Boston, MA, 2010, pp. 760–766.
  74. A. Tharwat, T. Gaber, A.E. Hassanien, B.E. Elnaghi, Particle Swarm Optimization: A Tutorial, Handbook of Research on Machine Learning Innovations and Trends, IGI Global: International Academic Publisher, Handbook of Research on Machine Learning Innovations and Trends (2 Volumes), Pennsylvania, United States, 2017, pp. 614–635.
  75. R. Razavi, A. Bemani, A. Baghban, A.H. Mohammadi, S. Habibzadeh, An insight into the estimation of fatty acid methyl ester based biodiesel properties using a LSSVM model, Fuel, 243 (2019) 133–141.
  76. J.-S. Chiou, S.-H. Tsai, M.-T. Liu, A PSO-based adaptive fuzzy PID-controllers, Simul. Modell. Pract. Theory, 26 (2012) 49–59.
  77. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell., 1 (2007) 33–57.
  78. M. Buragohain, Adaptive Network Based Fuzzy Inference System (ANFIS) as a Tool for System Identification with Special Emphasis on Training Data Minimization, Doctor of Philosophy, Department of Electronics and Communication Engineering, Indian Institute of Technology, Guwahati, India, 2009.
  79. Y. Tsukamoto, Advances in Fuzzy Set Theory and Applications, Netherland, Amsterdam: North-Holland, DA, 1979, pp. 137–149.
  80. A. Cruz, N. Mestrado, ANFIS: Adaptive Neuro-Fuzzy Inference Systems, IM, UFRJ, Mestrado, NCE, 2009.
  81. M. Afshar, A. Gholami, M. Asoodeh, Genetic optimization of neural network and fuzzy logic for oil bubble point pressure modeling, Korean J. Chem. Eng., 31 (2014) 496–502.
  82. H. Moeeni, H. Bonakdari, I. Ebtehaj, Integrated SARIMA with neuro-fuzzy systems and neural networks for monthly inflow prediction, Water Resour. Manage., 31 (2017) 2141–2156.
  83. I. Ebtehaj, H. Bonakdari, Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers, Water Resour. Manage., 28 (2014) 4765–4779.
  84. F. Moradi, H. Bonakdari, O. Kisi, I. Ebtehaj, J. Shiri, B. Gharabaghi, Abutment scour depth modeling using neurofuzzy- embedded techniques, Mar. Georesour. Geotechnol., 37 (2019) 190–200.
  85. J.A. Suykens, J. Vandewalle, Least squares support vector machine classifiers, Neural Process. Lett., 9 (1999) 293–300.
  86. V. Vapnik, V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
  87. T. Van Gestel, J.A. Suykens, B. Baesens, S. Viaene, J. Vanthienen, G. Dedene, B. De Moor, J. Vandewalle, Benchmarking least squares support vector machine classifiers, Mach. Learn., 54 (2004) 5–32.
  88. K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to Kernel-based learning algorithms, IEEE Trans. Neural Networks, 12 (2003) 181–201.
  89. S. Medasani, J. Kim, R. Krishnapuram, An overview of membership function generation techniques for pattern recognition, Int. J. Approximate Reasoning, 19 (1998) 391–417.
  90. N. Talpur, M.N.M. Salleh, K. Hussain, An investigation of membership functions on performance of ANFIS for solving classification problems, IOP Conf. Ser.: Mater. Sci. Eng., 226 (2017) 012103.
  91. M. Babanezhad, A.T. Nakhjiri, S. Shirazian, Changes in the number of membership functions for predicting the gas volume fraction in two-phase flow using grid partition clustering of the ANFIS method, ACS Omega, 5 (2020) 16284–16291.
  92. H. Bonakdari, H. Moeeni, I. Ebtehaj, M. Zeynoddin, A. Mahoammadian, B. Gharabaghi, New insights into soil temperature time series modeling: linear or nonlinear?, Theor. Appl. Climatol., 135 (2019) 1157–1177.
  93. M. Zeynoddin, H. Bonakdari, I. Ebtehaj, F. Esmaeilbeiki, B. Gharabaghi, D.Z. Haghi, A reliable linear stochastic daily soil temperature forecast model, Soil Tillage Res., 189 (2019) 73–87.
  94. S. Liu, Y. Yan, Y. Gao, Optimization of geometry parameters with separation efficiency and flow split ratio for downhole oil-water hydrocyclone, Therm. Sci. Eng. Prog., 8 (2018) 370–374.
  95. S. Qiu, G. Wang, S. Zhou, Q. Liu, L. Zhong, L. Wang, The downhole hydrocyclone separator for purifying natural gas hydrate: structure design, optimization, and performance, Sep. Sci. Technol., 55 (2020) 564–574.
  96. M. Liu, J. Chen, X. Cai, Y. Han, S. Xiong, Oil–water preseparation with a novel axial hydrocyclone, Chin. J. Chem. Eng., 26 (2018) 60–66.
  97. J.E. Hamza, H.H. Al-Kayiem, T.A. Lemma, Experimental investigation of the separation performance of oil/water mixture by compact conical axial hydrocyclone, Therm. Sci. Eng. Prog., 17 (2020) 100358, doi: 10.1016/j.tsep.2019.100358.
  98. H. OSEI, Experimental study of a hydrocyclonic oil-water separator for downhole separation, Ghana J. Technol., 4 (2019) 57–64.
  99. Y.-l. Chang, W.-q. Ti, H.-l. Wang, S.-w. Zhou, Y. Huang, J.-p. Li, G.-r. Wang, Q. Fu, H.-t. Lin, J.-w. Wu, Hydrocyclone used for in-situ sand removal of natural gas-hydrate in the subsea, Fuel, 285 (2021) 119075, doi:10.1016/j.fuel.2020.119075.