References

  1. U.P. Kiruba, P.S. Kumar, C. Prabhakaran, V. Aditya, Characteristics of thermodynamic, isotherm, kinetic, mechanism and design equations for the analysis of adsorption in Cd(II) ions-surface modified Eucalyptus seeds system, J. Taiwan Inst. Chem. Eng., 45 (2014) 2957–2968.
  2. Z. Hajahmadi, H. Younesi, N. Bahramifar, H. Khakpour, K. Pirzadeh, Multicomponent isotherm for biosorption of Zn(II), Co(II) and Cd(II) from ternary mixture onto pretreated dried Aspergillus niger biomass, Water Resour. Ind., 11 (2015) 71–80.
  3. U. Maheshwari, B. Mathesan, S. Gupta, Efficient adsorbent for simultaneous removal of Cu(II), Zn(II) and Cr(VI): kinetic, thermodynamics and mass transfer mechanism, Process Saf. Environ. Prot., 98 (2015) 198–210.
  4. M. Kapur, M.K. Mondal, Competitive sorption of Cu(II) and Ni(II) ions from aqueous solutions: kinetics, thermodynamics and desorption studies, J. Taiwan Inst. Chem. Eng., 45 (2014) 1803–1813.
  5. B. Singha, S.K. Das, Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes, Colloids Surf., B, 107 (2013) 97–106.
  6. Z.A. Alothman, A review: fundamental aspects of silicate mesoporous materials, Materials, 5 (2012) 2874–2902.
  7. Z.A. Alothman, A.H. Bahkali, M.A. Khiyami, S.M. Alfadul, S.M. Wabaidur, M. Alam, B.Z. Alfarhan, Low cost biosorbents from fungi for heavy metals removal from wastewater, Sep. Sci. Technol., 55 (2020) 1766–1775.
  8. A. Mittal, M. Naushad, G. Sharma, Z.A. Alothman, S.M. Wabaidur, M. Alam, Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium, Desal. Water Treat., 57 (2015) 21863–21869.
  9. P. SenthilKumar, S. Ramalingam, V. Sathyaselvabala, S.D. Kirupha, S. Sivanesan, Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell, Desalination, 266 (2011) 63–71.
  10. R.T. Hadi, A.B. Salman, S. Nabeel, S.A. Soud, Recovery of lead from simulated wastewater by using stainless steel rotating cylinder electrode electrochemical reactor, Desal. Water Treat., 99 (2017) 266–271.
  11. M. Ahmaruzzaman, Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals, Adv. Colloid Interface Sci., 166 (2011) 36–59.
  12. D. Ding, Y. Zhao, S. Yang, W. Shi, Z. Zhang, Z. Lei, Y. Yang, Adsorption of cesium from aqueous solution using agricultural residue-walnut shell: equilibrium, kinetic and thermodynamic modeling studies, Water Res., 47 (2013) 2563–2571.
  13. W.X. Zhou, D.G. Guan, Y. Sun, C.M. Sun, G.L. Xu, T. Chen, Z.S. Yu, Y. Xu, H. Yan, Removal of nickel(II) Ion from wastewater by modified maifanite, Mater. Sci. Forum, 814 (2015) 371–375.
  14. Inamuddin, M.I. Ahamed, A.M. Asiri, Applications of Ion Exchange Materials in the Environment, Springer International Publishing, Cham, 2019.
  15. S.M. Al-Jubouri, H.A. Sabbar, H.A. Lafta, B.I. Waisi, Effect of synthesis parameters on the formation 4A zeolite crystals: characterization analysis and heavy metals uptake performance study for water treatment, Desal. Water Treat., 165 (2019) 290–300.
  16. M.M.H. Khalil, K.Z. Al-Wakeel, S.S. Abd El Rehim, H. Abd El Monem, Efficient removal of ferric ions from aqueous medium by amine modified chitosan resins, J. Environ. Chem. Eng., 1 (2013) 566–573.
  17. J.C. Igwe, A.A. Abia, Adsorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob, Eclética Química, 32 (2007) 33–42.
  18. H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution, Appl. Surf. Sci., 279 (2013) 432–440.
  19. M. del R.M. Virgen, O.F.G. Vázquez, V.H. Montoya, R.T. Gómez, Removal of Heavy Metals Using Adsorption Processes Subject to an External Magnetic Field, H. El-Din M. Saleh, R.F. Aglan, Eds., Heavy Metals, 2018, p. 253, doi: 10.5772/intechopen.74050.
  20. X. Zhang, Y. Hao, X. Wang, Z. Chen, C. Li, Competitive adsorption of cadmium(II) and mercury(II) ions from aqueous solutions by activated carbon from Xanthoceras sorbifolia bunge hull, J. Chem., 2016 (2016), doi:10.1155/2016/4326351.
  21. M.N. Carvalho, C.A. De Abreu, M. Benachour, D.C. Sales, O.S. Baraúna, M.A. Da Motta Sobrinho, Applying combined Langmuir–Freundlich model to the multi-component adsorption of BTEX and phenol on smectite clay, Adsorpt. Sci. Technol., 30 (2012) 691–700.
  22. A.A. Alqadami, M.A. Khan, M.R. Siddiqui, Z.A. Alothman, Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead(II) from water, Microporous Mesoporous Mater., 261 (2018) 198–206.
  23. M.A. Khan, A.A. Alqadami, M. Otero, M.R. Siddiqui, Z.A. Alothman, I. Alsohaimi, M. Rafatullah, A.E. Hamedelniel, Heteroatom-doped magnetic hydrochar to remove posttransition and transition metals from water: synthesis, characterization, and adsorption studies, Chemosphere, 218 (2019) 1089–1099.
  24. I. Ali, O.M. Alharbi, Z.A. ALOthman, A.M. Al-Mohaimeed, A. Alwarthan, Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water, Environ. Res., 170 (2019) 389–397.
  25. Z.A. ALOthman, A.Y. Badjah, I. Ali, Facile synthesis and characterization of multi walled carbon nanotubes for fast and effective removal of 4-tert-octylphenol endocrine disruptor in water, J. Mol. Liq., 275 (2019) 41–48.
  26. S.M. Al-Jubouri, B.I. Waisi, S.M. Holmes, Rietveld texture refinement analysis of Linde type A zeolite from X-ray diffraction data, J. Eng. Sci. Technol., 13 (2018) 4066–4077.
  27. S.M. Al-Jubouri, The static aging effect on the seedless synthesis of different ranges Faujasite-type zeolite Y at various factors, Iraqi J. Chem. Pet. Eng., 20 (2019) 7–13.
  28. S.M. Al-Jubouri, S.I. Al-Batty, S.M. Holmes, Using the ash of common water reeds as a silica source for producing high purity ZSM-5 zeolite microspheres, Microporous Mesoporous Mater., 316 (2021) 110953,
    doi: 10.1016/j. micromeso.2021.110953.
  29. S.M. Al-Jubouri, Synthesis of hierarchically porous ZSM-5 zeolite by self-assembly induced by aging in the absence of seeding-assistance, Microporous Mesoporous Mater., 303 (2020) 110296, doi:10.1016/j.micromeso.2020.110296.
  30. D.A. De Haro-Del Rio, S.M. Al-Jubouri, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams, Chim. Oggi – Chem. Today, 35 (2017) 26–29.
  31. S.M. Al-Jubouri, D.A. De Haro-Del Rio, A. Alfutimie, N.A. Curry, S.M. Holmes, Understanding the seeding mechanism of hierarchically porous zeolite/carbon composites, Microporous Mesoporous Mater., 268 (2018) 109–116.
  32. S.M. Al-Jubouri, S.M. Holmes, Immobilization of cobalt ions using hierarchically porous 4A zeolite-based carbon composites: ion-exchange and solidification, J. Water Process Eng., 33 (2020) 101059, doi:10.1016/j.jwpe.2019.101059.
  33. M. Luqman, Ion Exchange Technology I: Theory and Materials (Vol. 1), Springer Science & Business Media, 2012.
  34. I. Mobasherpour, E. Salahi, M. Pazouki, Comparative of the removal of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from aqueous solutions: adsorption isotherm study, Arabian J. Chem., 5 (2012) 439–446.
  35. M.A. Khan, A.A. Alqadami, S.M. Wabaidur, M.R. Siddiqui, B.-H. Jeon, S.A. Alshareef, Z.A. Alothman, A.E. Hamedelniel, Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water, J. Hazard. Mater., 400 (2020) 123247, doi: 10.1016/j.jhazmat.2020.123247.
  36. A.S. Yaro, M.H. Al-Hassani, H.A.K. Rasheed, Treatment copper biosorption using local Iraqi natural agents, Desal. Water Treat., 54 (2015) 533–539.
  37. É.C. Lima, M.A. Adebayo, F.M. Machado, Kinetic and Equilibrium Models of Adsorption, C.P. Bergmann, F.M. Machado, Eds., Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications, Springer, Cham, 2015, pp. 33–69.
  38. M.A. Hossain, H.H. Ngo, W.S. Guo, T. V. Nguyen, Palm oil fruit shells as biosorbent for copper removal from water and wastewater: experiments and sorption models, Bioresour. Technol., 113 (2012) 97–101.
  39. A.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C. Almeida, Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models, Chem. Eng. J., 168 (2011) 722–730.
  40. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017), doi: 10.1155/2017/3039817.
  41. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  42. S.M. Al-Jubouri, N.A. Curry, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste, J. Hazard. Mater., 320 (2016) 241–251.
  43. S.M. Al-Jubouri, S.M. Holmes, Hierarchically porous zeolite X composites for manganese ion-exchange and solidification: equilibrium isotherms, kinetic and thermodynamic studies, Chem. Eng. J., 308 (2017) 476–491.
  44. Q. Ge, M. Moeen, Q. Tian, J. Xu, K. Feng, Highly effective removal of Pb2+ in aqueous solution by Na-X zeolite derived from coal gangue, Environ. Sci. Pollut. Res., 27 (2020) 7398–7408.
  45. S.A. Ghorbanian, N. Bagheri, A. Khakpay, Investigation of Adsorption Isotherms of Benzoic Acid on Activated Carbon, 1st National Conference on Industrial Water and Wastewater Treatment, Mahshahr, Iran, 2012, pp. 1–5.
  46. T.P. Belova, Adsorption of heavy metal ions (Cu2+, Ni2+, Co2+ and Fe2+) from aqueous solutions by natural zeolite, Heliyon, 5 (2019) e02320, doi: 10.1016/j.heliyon.2019.e02320.
  47. A. Maleki, M. Mohammad, Z. Emdadi, N. Asim, M. Azizi, J. Safaei, Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions, Arabian J. Chem., 13 (2020) 3017–3025.
  48. M.R. Samarghandi, M. Hadi, S. Moayedi, F.B. Askari, Twoparameter isotherms of methyl orange sorption by pinecone derived activated carbon, Iran. J. Environ. Health Sci. Eng., 6 (2009) 285–294.
  49. M.T. Amin, A.A. Alazba, M. Shafiq, Adsorptive removal of reactive black 5 from wastewater using bentonite clay: isotherms, kinetics and thermodynamics, Sustainability, 7 (2015) 15302–15318.
  50. A. Abdolali, H.H. Ngo, W. Guo, S. Lu, S.S. Chen, N.C. Nguyen, X. Zhang, J. Wang, Y. Wu, A breakthrough biosorbent in removing heavy metals: equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study, Sci. Total Environ., 542 (2016) 603–611.
  51. A.H. Ali, Comparative study on removal of cadmium(II) from simulated wastewater by adsorption onto GAC, DB, and PR, Desal. Water Treat., 51 (2013) 5547–5558.
  52. M. Zhang, H. Zhang, D. Xu, L. Han, D. Niu, B. Tian, J. Zhang, L. Zhang, W. Wu, Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method, Desalination, 271 (2011) 111–121.