References
- M. Khodadadi, S. Rodriguez-Couto, F.S. Arghavan, A. Hossein
Panahi, Synthesis and characterization of FeNi3@SiO2@TiO2 nano-composite and its application as a catalyst in a
photochemical oxidation process to decompose tetracycline,
Desal. Water Treat., 195 (2020) 435–449.
- N. Nasseh, T.J. Al-Musawi, M.R. Miri, S. Rodriguez-Couto,
A. Hossein Panahi, A comprehensive study on the application
of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel
photo-catalyst for degradation of tamoxifen in the presence
of simulated sunlight, Environ. Pollut., 261 (2020) 114127,
doi:10.1016/j.envpol.2020.114127.
- N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A. Hossein
Panahi, M. Esmati, T.J. A-Musawi, Preparation of activated
carbon@ZnO composite and its application as a novel catalyst
in catalytic ozonation process for metronidazole degradation,
Adv. Powder Technol., 31 (2020) 875–885.
- N. Nasseh, A. Hossein Panahi, M. Esmati, N. Daglioglu,
A. Asadi, H. Rajati, F. Khodadoost, Enhanced photocatalytic
degradation of tetracycline from aqueous solution by a novel
magnetically separable FeNi3/SiO2/ZnO
nano-composite under
simulated sunlight: efficiency, stability, and kinetic studies,
J. Mol. Liq., 301 (2020) 112434, doi: 10.1016/j.molliq.2019.112434.
- M. Scheurer, A. Michel, H.J. Brauch, W. Ruck, F. Sacher,
Occurrence and fate of the antidiabetic drug metformin and its
metabolite guanylurea in the environment and during drinking
water treatment, Water Res., 46 (2012) 4790–4802.
- S. Nezar, N.A. Laoufi, Electron acceptors effect on photocatalytic
degradation of metformin under sunlight irradiation,
Sol. Energy, 164 (2018) 267–275.
- H. Adel Niaei, M. Rostamizadeh, Adsorption of metformin from
an aqueous solution by Fe-ZSM-5 nano-adsorbent: isotherm,
kinetic and thermodynamic studies, J. Chem. Thermodyn.,
142 (2020) 106003, doi:10.1016/j.jct.2019.106003.
- P. Bansal, A. Verma, K. Aggarwal, A. Singh, S. Gupta,
Investigations on the degradation of an antibiotic cephalexin
using suspended and supported TiO2: mineralization and
durability studies, Can. J. Chem. Eng., 94 (2016) 1269–1276.
- T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A.H. Panahi,
M.F. Silva, G. Abi, Optimization the effects of physicochemical
parameters on the degradation of cephalexin in sono-Fenton
reactor by using Box–Behnken response surface methodology,
Catal. Lett., 149 (2019) 1186–1196.
- A.H. Panahi, S.D. Ashrafi, H. Kamani, M. Khodadadi,
E.C. Lima, F.K. Mostafapour, A.H. Mahvi, Removal of
cephalexin from artificial wastewater by mesoporous silica
materials using box-behnken response surface methodology,
Desal. Water Treat., 159 (2019) 169–180.
- M. Dehghani, S. Behzadi, M.S. Sekhavatjou, Optimizing
Fenton process for the removal of amoxicillin from the
aqueous phase using Taguchi method, Desal. Water Treat.,
57 (2016) 6604–6613.
- Z. Derakhshan, A.H. Mahvi, M.H. Ehrampoush, S.M. Mazloomi,
M. Faramarzian, M. Dehghani, S. Yousefinejad,
M.T. Ghaneian,
S.M. Abtahi, Studies on influence of process parameters on
simultaneous biodegradation of atrazine and nutrients in
aquatic environments by a membrane photobioreactor, Environ.
Res., 161 (2018) 599–608.
- M. Dehghani, M. Farzadkia, E. Shahsavani, M.R. Samaei,
Optimizing photo-Fenton like process for the removal of diesel
fuel from the aqueous phase, J. Environ. Health Sci. Eng.,
12 (2014) 1–7, doi: 10.1186/2052-336X-12-87.
- F.S. Arghavan, A. Hossein Panahi, N. Nasseh, M. Ghadirian,
Adsorption-photocatalytic processes for removal of pentachlorophenol
contaminant using FeNi3/SiO2/ZnO magnetic
nanocomposite under simulated solar light irradiation, Environ.
Sci. Pollut. Res., 28 (2021) 7462–7475.
- A.H. Panahi, M. Kamranifar, M.H. Moslehi, S. Rodriguez-Couto, N. Nasseh, Synthesis and characterization of FeNi3
nanoparticles and their application as catalysts for penicillin
g degradation in a fenton-like reaction, Desal. Water Treat.,
181 (2020) 391–398.
- A. Hossein Panahi, A. Meshkinian, S.D. Ashrafi, M. Khan,
A. Naghizadeh, G. Abi, H. Kamani, Survey of
sono-activated
persulfate process for treatment of real dairy wastewater, Int. J.
Environ. Sci. Technol., 17 (2020) 93–98.
- E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of
amoxicillin, ampicillin and cloxacillin antibiotics in aqueous
solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis,
Desalination, 252 (2010) 46–52.
- N. Shamsedini, M. Dehghani, S. Nasseri, M.A. Baghapour,
Photocatalytic degradation of atrazine herbicide with
Illuminated Fe3+-TiO2 nanoparticles, J. Environ. Health Sci. Eng.,
15 (2017) 1–10.
- P. Chinnaiyan, S.G. Thampi, M. Kumar, M. Balachandran,
Photocatalytic degradation of metformin and amoxicillin in
synthetic hospital wastewater: effect of classical parameters, Int.
J. Environ. Sci. Technol., 16 (2019) 5463–5474.
- C.F. Carbuloni, J.E. Savoia, J.S.P. Santos, C.A.A. Pereira,
R.G. Marques, V.A.S. Ribeiro, A.M. Ferrari, Degradation of
metformin in water by TiO2–ZrO2 photocatalysis, J. Environ.
Manage., 262 (2020) 110347, doi:10.1016/j.jenvman.2020.110347.
- N.M. Phuong, N.C. Chu, D. Van Thuan, M.N. Ha, N.T. Hanh,
H.D.T. Viet, N.T. Minh Thu, P. Van Quan, N.T. Thanh Truc, A.K.
Sharma, Novel removal of diazinon pesticide by adsorption
and photocatalytic degradation of visible light-driven
Fe-TiO2/Bent-Fe photocatalyst, J. Chem., 2019 (2019) 2678927,
doi: 10.1155/2019/2678927.
- M. Khodadadi, T.J. Al-Musawi, H. Kamani, M.F. Silva,
A.H. Panahi, The practical utility of the synthesis
FeNi3@SiO2@TiO2 magnetic nanoparticles as an efficient photocatalyst for
the humic acid degradation, Chemosphere, 239 (2020) 124723,
doi: 10.1016/j.chemosphere.2019.124723.
- S. Wu, H. Hu, Y. Lin, J. Zhang, Y.H. Hu, Visible light
photocatalytic degradation of tetracycline over TiO2, Chem.
Eng. J., 382 (2020) 122842, doi: 10.1016/j.cej.2019.122842.
- M. Asiltürk, F. Sayilkan, E. Arpaç, Effect of Fe3+ ion doping to
TiO2 on the photocatalytic degradation of Malachite Green
dye under UV and vis-irradiation, J. Photochem. Photobiol., A,
203 (2009) 64–71.
- Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Enhanced visible light
photocatalytic properties of Fe-doped TiO2 nanorod clusters
and monodispersed nanoparticles, Appl. Surf. Sci., 257 (2011)
8121–8126.
- G.A. Elizalde-Velázquez, L.M. Gómez-Oliván, Occurrence, toxic
effects and removal of metformin in the aquatic environments
in the world: recent trends and perspectives, Sci. Total Environ.,
702 (2020) 134924, doi:10.1016/j.scitotenv.2019.134924.
- B.A. Wols, C.H.M. Hofman-Caris, D.J.H. Harmsen, E.F. Beerendonk,
Degradation of 40 selected pharmaceuticals by UV/H2O2,
Water Res., 47 (2013) 5876–5888.
- S.B. Eadi, S. Kim, S.W. Jeong, H.W. Jeon, Novel preparation
of Fe-doped TiO2 nanoparticles and their application for gas
sensor and photocatalytic degradation, Adv. Mater. Sci. Eng.,
2017 (2017) 2191659, doi:10.1155/2017/2191659.
- A. Jahantiq, R. Ghanbari, A.H. Panahi, S.D. Ashrafi, A.D. Khatibi,
E. Noorabadi, A. Meshkinian, H. Kamani, Photocatalytic
degradation of 2,4,6-trichlorophenol in aqueous solutions using
synthesized Fe-doped TiO2 nanoparticles via response surface
methodology, Desal. Water Treat., 183 (2020) 366–373.
- S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, Highly effective
Fe-doped TiO2 nanoparticles photocatalysts for visible-light
driven photocatalytic degradation of toxic organic compounds,
J. Colloid Interface Sci., 450 (2015) 213–223.
- S. Song, C. Hao, X. Zhang, Q. Zhang, R. Sun, Sonocatalytic
degradation of methyl orange in aqueous solution using
Fe-doped TiO2 nanoparticles under mechanical agitation, Open
Chem., 16 (2018) 1283–1296.
- M. Rostami, R.M. Zamani, K.M. Aghajanzadeh, H. Danafar,
Sol–gel synthesis and characterization of zinc ferrite–graphene nano-hybrids for photo-catalytic degradation of the
paracetamol, J. Pharm. Invest., 48 (2018) 657–664.
- Z. Li, W. Shen, W. He, X. Zu, Effect of Fe-doped TiO2
nanoparticle derived from modified hydrothermal process on
the photocatalytic degradation performance on methylene blue,
J. Hazard. Mater., 155 (2008) 590–594.
- H. Moradi, A. Eshaghi, S.R. Hosseini, K. Ghani, Fabrication of
Fe-doped TiO2 nanoparticles and investigation of photocatalytic
decolorization of reactive red 198 under visible light irradiation,
Ultrason. Sonochem., 32 (2016) 314–319.
- R. Kumar, A. Akbarinejad, T. Jasemizad, R. Fucina, J. Travas-Sejdic, L.P. Padhye, The removal of metformin and other selected
PPCPs from water by poly(3,4-ethylenedioxythiophene)
photocatalyst, Sci. Total Environ., 751 (2021) 142302, doi:
10.1016/j.scitotenv.2020.142302.
- R.S. Thakur, R. Chaudhary, C. Singh, Fundamentals and
applications of the photocatalytic treatment for the removal
of industrial organic pollutants and effects of operational
parameters: a review, J. Renewable Sustainable Energy, 2 (2010)
042701, doi: 10.1063/1.3467511.
- S.H. Lin, C.H. Chiou, C.K. Chang, R.S. Juang, Photocatalytic
degradation of phenol on different phases of TiO2 particles
in aqueous suspensions under UV irradiation, J. Environ.
Manage., 92 (2011) 3098–3104.
- E. Aseman-Bashiz, H. Sayyaf, Metformin degradation in aqueous
solutions by electro-activation of persulfate and hydrogen
peroxide using natural and synthetic ferrous ion sources, J. Mol.
Liq., 300 (2020) 112285, doi:10.1016/j.molliq.2019.112285.
- C.S. Lu, F. Der Mai, C.W. Wu, R.J. Wu, C.C. Chen, Titanium
dioxide-mediated photocatalytic degradation of Acridine
Orange in aqueous suspensions under UV irradiation, Dyes
Pigm., 76 (2008) 706–713.
- M. Dolatabadi, S. Ahmadzadeh, A rapid and efficient removal
approach for degradation of metformin in pharmaceutical
wastewater using electro-Fenton process; optimization by
response surface methodology, Water Sci. Technol., 80 (2019)
685–694.