References

  1. M. Khodadadi, S. Rodriguez-Couto, F.S. Arghavan, A. Hossein Panahi, Synthesis and characterization of FeNi3@SiO2@TiO2 nano-composite and its application as a catalyst in a photochemical oxidation process to decompose tetracycline, Desal. Water Treat., 195 (2020) 435–449.
  2. N. Nasseh, T.J. Al-Musawi, M.R. Miri, S. Rodriguez-Couto, A. Hossein Panahi, A comprehensive study on the application of FeNi3@SiO2@ZnO magnetic nanocomposites as a novel photo-catalyst for degradation of tamoxifen in the presence of simulated sunlight, Environ. Pollut., 261 (2020) 114127, doi:10.1016/j.envpol.2020.114127.
  3. N. Nasseh, F.S. Arghavan, S. Rodriguez-Couto, A. Hossein Panahi, M. Esmati, T.J. A-Musawi, Preparation of activated carbon@ZnO composite and its application as a novel catalyst in catalytic ozonation process for metronidazole degradation, Adv. Powder Technol., 31 (2020) 875–885.
  4. N. Nasseh, A. Hossein Panahi, M. Esmati, N. Daglioglu, A. Asadi, H. Rajati, F. Khodadoost, Enhanced photocatalytic degradation of tetracycline from aqueous solution by a novel magnetically separable FeNi3/SiO2/ZnO
    nano-composite under simulated sunlight: efficiency, stability, and kinetic studies, J. Mol. Liq., 301 (2020) 112434, doi: 10.1016/j.molliq.2019.112434.
  5. M. Scheurer, A. Michel, H.J. Brauch, W. Ruck, F. Sacher, Occurrence and fate of the antidiabetic drug metformin and its metabolite guanylurea in the environment and during drinking water treatment, Water Res., 46 (2012) 4790–4802.
  6. S. Nezar, N.A. Laoufi, Electron acceptors effect on photocatalytic degradation of metformin under sunlight irradiation, Sol. Energy, 164 (2018) 267–275.
  7. H. Adel Niaei, M. Rostamizadeh, Adsorption of metformin from an aqueous solution by Fe-ZSM-5 nano-adsorbent: isotherm, kinetic and thermodynamic studies, J. Chem. Thermodyn., 142 (2020) 106003, doi:10.1016/j.jct.2019.106003.
  8. P. Bansal, A. Verma, K. Aggarwal, A. Singh, S. Gupta, Investigations on the degradation of an antibiotic cephalexin using suspended and supported TiO2: mineralization and durability studies, Can. J. Chem. Eng., 94 (2016) 1269–1276.
  9. T.J. Al-Musawi, H. Kamani, E. Bazrafshan, A.H. Panahi, M.F. Silva, G. Abi, Optimization the effects of physicochemical parameters on the degradation of cephalexin in sono-Fenton reactor by using Box–Behnken response surface methodology, Catal. Lett., 149 (2019) 1186–1196.
  10. A.H. Panahi, S.D. Ashrafi, H. Kamani, M. Khodadadi, E.C. Lima, F.K. Mostafapour, A.H. Mahvi, Removal of cephalexin from artificial wastewater by mesoporous silica materials using box-behnken response surface methodology, Desal. Water Treat., 159 (2019) 169–180.
  11. M. Dehghani, S. Behzadi, M.S. Sekhavatjou, Optimizing Fenton process for the removal of amoxicillin from the aqueous phase using Taguchi method, Desal. Water Treat., 57 (2016) 6604–6613.
  12. Z. Derakhshan, A.H. Mahvi, M.H. Ehrampoush, S.M. Mazloomi, M. Faramarzian, M. Dehghani, S. Yousefinejad,
    M.T. Ghaneian, S.M. Abtahi, Studies on influence of process parameters on simultaneous biodegradation of atrazine and nutrients in aquatic environments by a membrane photobioreactor, Environ. Res., 161 (2018) 599–608.
  13. M. Dehghani, M. Farzadkia, E. Shahsavani, M.R. Samaei, Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase, J. Environ. Health Sci. Eng., 12 (2014) 1–7, doi: 10.1186/2052-336X-12-87.
  14. F.S. Arghavan, A. Hossein Panahi, N. Nasseh, M. Ghadirian, Adsorption-photocatalytic processes for removal of pentachlorophenol contaminant using FeNi3/SiO2/ZnO magnetic nanocomposite under simulated solar light irradiation, Environ. Sci. Pollut. Res., 28 (2021) 7462–7475.
  15. A.H. Panahi, M. Kamranifar, M.H. Moslehi, S. Rodriguez-Couto, N. Nasseh, Synthesis and characterization of FeNi3 nanoparticles and their application as catalysts for penicillin g degradation in a fenton-like reaction, Desal. Water Treat., 181 (2020) 391–398.
  16. A. Hossein Panahi, A. Meshkinian, S.D. Ashrafi, M. Khan, A. Naghizadeh, G. Abi, H. Kamani, Survey of
    sono-activated persulfate process for treatment of real dairy wastewater, Int. J. Environ. Sci. Technol., 17 (2020) 93–98.
  17. E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252 (2010) 46–52.
  18. N. Shamsedini, M. Dehghani, S. Nasseri, M.A. Baghapour, Photocatalytic degradation of atrazine herbicide with Illuminated Fe3+-TiO2 nanoparticles, J. Environ. Health Sci. Eng., 15 (2017) 1–10.
  19. P. Chinnaiyan, S.G. Thampi, M. Kumar, M. Balachandran, Photocatalytic degradation of metformin and amoxicillin in synthetic hospital wastewater: effect of classical parameters, Int. J. Environ. Sci. Technol., 16 (2019) 5463–5474.
  20. C.F. Carbuloni, J.E. Savoia, J.S.P. Santos, C.A.A. Pereira, R.G. Marques, V.A.S. Ribeiro, A.M. Ferrari, Degradation of metformin in water by TiO2–ZrO2 photocatalysis, J. Environ. Manage., 262 (2020) 110347, doi:10.1016/j.jenvman.2020.110347.
  21. N.M. Phuong, N.C. Chu, D. Van Thuan, M.N. Ha, N.T. Hanh, H.D.T. Viet, N.T. Minh Thu, P. Van Quan, N.T. Thanh Truc, A.K. Sharma, Novel removal of diazinon pesticide by adsorption and photocatalytic degradation of visible light-driven Fe-TiO2/Bent-Fe photocatalyst, J. Chem., 2019 (2019) 2678927, doi: 10.1155/2019/2678927.
  22. M. Khodadadi, T.J. Al-Musawi, H. Kamani, M.F. Silva, A.H. Panahi, The practical utility of the synthesis
    FeNi3@SiO2@TiO2 magnetic nanoparticles as an efficient photocatalyst for the humic acid degradation, Chemosphere, 239 (2020) 124723, doi: 10.1016/j.chemosphere.2019.124723.
  23. S. Wu, H. Hu, Y. Lin, J. Zhang, Y.H. Hu, Visible light photocatalytic degradation of tetracycline over TiO2, Chem. Eng. J., 382 (2020) 122842, doi: 10.1016/j.cej.2019.122842.
  24. M. Asiltürk, F. Sayilkan, E. Arpaç, Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of Malachite Green dye under UV and vis-irradiation, J. Photochem. Photobiol., A, 203 (2009) 64–71.
  25. Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles, Appl. Surf. Sci., 257 (2011) 8121–8126.
  26. G.A. Elizalde-Velázquez, L.M. Gómez-Oliván, Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: recent trends and perspectives, Sci. Total Environ., 702 (2020) 134924, doi:10.1016/j.scitotenv.2019.134924.
  27. B.A. Wols, C.H.M. Hofman-Caris, D.J.H. Harmsen, E.F. Beerendonk, Degradation of 40 selected pharmaceuticals by UV/H2O2, Water Res., 47 (2013) 5876–5888.
  28. S.B. Eadi, S. Kim, S.W. Jeong, H.W. Jeon, Novel preparation of Fe-doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation, Adv. Mater. Sci. Eng., 2017 (2017) 2191659, doi:10.1155/2017/2191659.
  29. A. Jahantiq, R. Ghanbari, A.H. Panahi, S.D. Ashrafi, A.D. Khatibi, E. Noorabadi, A. Meshkinian, H. Kamani, Photocatalytic degradation of 2,4,6-trichlorophenol in aqueous solutions using synthesized Fe-doped TiO2 nanoparticles via response surface methodology, Desal. Water Treat., 183 (2020) 366–373.
  30. S. Sood, A. Umar, S.K. Mehta, S.K. Kansal, Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds, J. Colloid Interface Sci., 450 (2015) 213–223.
  31. S. Song, C. Hao, X. Zhang, Q. Zhang, R. Sun, Sonocatalytic degradation of methyl orange in aqueous solution using Fe-doped TiO2 nanoparticles under mechanical agitation, Open Chem., 16 (2018) 1283–1296.
  32. M. Rostami, R.M. Zamani, K.M. Aghajanzadeh, H. Danafar, Sol–gel synthesis and characterization of zinc ferrite–graphene nano-hybrids for photo-catalytic degradation of the paracetamol, J. Pharm. Invest., 48 (2018) 657–664.
  33. Z. Li, W. Shen, W. He, X. Zu, Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue, J. Hazard. Mater., 155 (2008) 590–594.
  34. H. Moradi, A. Eshaghi, S.R. Hosseini, K. Ghani, Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation, Ultrason. Sonochem., 32 (2016) 314–319.
  35. R. Kumar, A. Akbarinejad, T. Jasemizad, R. Fucina, J. Travas-Sejdic, L.P. Padhye, The removal of metformin and other selected PPCPs from water by poly(3,4-ethylenedioxythiophene) photocatalyst, Sci. Total Environ., 751 (2021) 142302, doi: 10.1016/j.scitotenv.2020.142302.
  36. R.S. Thakur, R. Chaudhary, C. Singh, Fundamentals and applications of the photocatalytic treatment for the removal of industrial organic pollutants and effects of operational parameters: a review, J. Renewable Sustainable Energy, 2 (2010) 042701, doi: 10.1063/1.3467511.
  37. S.H. Lin, C.H. Chiou, C.K. Chang, R.S. Juang, Photocatalytic degradation of phenol on different phases of TiO2 particles in aqueous suspensions under UV irradiation, J. Environ. Manage., 92 (2011) 3098–3104.
  38. E. Aseman-Bashiz, H. Sayyaf, Metformin degradation in aqueous solutions by electro-activation of persulfate and hydrogen peroxide using natural and synthetic ferrous ion sources, J. Mol. Liq., 300 (2020) 112285, doi:10.1016/j.molliq.2019.112285.
  39. C.S. Lu, F. Der Mai, C.W. Wu, R.J. Wu, C.C. Chen, Titanium dioxide-mediated photocatalytic degradation of Acridine Orange in aqueous suspensions under UV irradiation, Dyes Pigm., 76 (2008) 706–713.
  40. M. Dolatabadi, S. Ahmadzadeh, A rapid and efficient removal approach for degradation of metformin in pharmaceutical wastewater using electro-Fenton process; optimization by response surface methodology, Water Sci. Technol., 80 (2019) 685–694.