References
- Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, N. Li, Adsorption
isotherm, kinetic and mechanism studies of some substituted
phenols on AC fibers, Chem. Eng. J., 157 (2010) 348–356.
- Y. Li, X. Hu, X. Liu, Y. Zhang, Q. Zhao, P. Ning, S. Tian,
Adsorption behavior of phenol by reversible surfactantmodified
montmorillonite: mechanism, thermodynamics, and
regeneration, Chem. Eng. J., 334 (2018) 1214–1221.
- M.H. El-Naas, S. Al-Zuhair, M.A. Alhaija, Removal of phenol
from petroleum refinery wastewater through adsorption on
date-pit AC, Chem. Eng. J., 162 (2010) 997–1005.
- J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin,
K.S.W. Sing, Adsorption by Powders and Porous Solids:
Principles, Methodology and Applications, Academic Press,
Elsevier, Paris, 2013.
- M. Alshabanat, G. Alsenani, R. Almufarij, Removal of crystal
violet dye from aqueous solutions onto date palm fiber by
adsorption technique, J. Chem., 2013 (2013) 210239.
- H. Marsh, F.R. Reinoso, Activated Carbon, Elsevier, 2006.
- R.C. Bansal, M. Goyal, AC Adsorption, Activated Carbon
Adsorption, CRC Press, Taylor & Francis, London, 2005.
- G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Adsorptionoriented
processes using conventional and non-conventional
adsorbents for wastewater treatment, Green Adsorbents Pollut.
Removal, 18 (2018) 23–71.
- R.I. Yousef, B. El-Eswed, H. Ala’a, Adsorption characteristics
of natural zeolites as solid adsorbents for phenol removal from
aqueous solutions: kinetics, mechanism, and thermodynamics
studies, Chem. Eng. J., 171 (2011) 1143–1149.
- R. Fang, H. Huang, J. Ji, M. He, Q. Feng, Y. Zhan, D.Y.C. Leung,
Efficient MnOx supported on coconut shell AC for catalytic
oxidation of indoor formaldehyde at room temperature, Chem.
Eng. J., 334 (2018) 2050–2057.
- E. Díaz, A.F. Mohedano, L. Calvo, M.A. Gilarranz, J.A. Casas,
J.J. Rodríguez, Hydrogenation of phenol in aqueous phase with
palladium on AC catalysts, Chem. Eng. J., 131 (2007) 65–71.
- M. Yu, Y. Han, J. Li, L. Wang, CO2-activated porous carbon derived
from cattail biomass for removal of malachite green dye and
application as supercapacitors, Chem. Eng. J., 317 (2017) 493–502.
- L.A. Rodrigues, M.L.C.P. da Silva, M.O. Alvarez-Mendes,
A. dos Reis Coutinho, G.P. Thim, Phenol removal from aqueous
solution by AC produced from avocado kernel seeds, Chem.
Eng. J., 174 (2011) 49–57.
- P. Girods, A. Dufour, V. Fierro, Y. Rogaume, C. Rogaume,
A. Zoulalian, A. Celzard, ACs prepared from wood
particleboard wastes: characterisation and phenol adsorption
capacities, J. Hazard. Mater., 166 (2009) 491–501.
- F. Boudrahem, F. Aissani-Benissad, H. Aït-Amar, Batch sorption
dynamics and equilibrium for the removal of lead ions from
aqueous phase using AC developed from coffee residue activated
with zinc chloride, J. Environ. Manage., 90 (2009) 3031–3039.
- R.U. Edgehill, G.Q. Lu, Adsorption characteristics of carbonized
bark for phenol and pentachlorophenol, J. Chem. Technol.
Biotechnol., 71 (1998) 27–34.
- B. Petrova, T. Budinova, B. Tsyntsarski, V. Kochkodan,
Z. Shkavro, N. Petrov, Removal of aromatic hydrocarbons from
water by AC from apricot stones, Chem. Eng. J., 165 (2010)
258–264.
- M.L. Sekirifa, M. Hadj-Mahammed, S. Pallier, L. Baameur,
D. Richard, A.H. Al-Dujaili, Preparation and characterization of
an AC from a date stones variety by physical activation with
carbon dioxide, J. Anal. Appl. Pyrolysis, 99 (2013) 155–160.
- M.L. Sekirifa, S. Pallier, M. Hadj-Mahammed, D. Richard,
L. Baameur, A.H. Al-Dujaili, Measurement of the performance
of an agricultural residue-based AC aiming at the removal
of 4-chlophenol from aqueous solutions, Energy Procedia,
36 (2013) 94–103.
- M. Abdulkarim, F.A. Al-Rub, Adsorption of lead ions from
aqueous solution onto AC and chemically-modified AC
prepared from date pits, Adsorpt. Sci. Technol., 22 (2004)
119–134.
- M. Belhachemi, Z. Belala, D. Lahcene, F. Addoun, Adsorption
of phenol and dye from aqueous solution using chemically
modified date pits ACs, Desal. Wat. Treat., 7 (2009) 182–190.
- M.T. Amin, A.A. Alazba, M. Shafiq, Adsorption of copper (Cu2+)
from aqueous solution using date palm trunk fibre: isotherms
and kinetics, Desal. Wat. Treat., 57 (2016) 22454–22466.
- S.M. Yakout, G.S. El-Deen, Characterization of AC prepared by
phosphoric acid activation of olive stones, Arabian J. Chem.,
9 (2016) S1155–S1162.
- C.A. Garcia, J.C.G. Moraes, E.M. Nogami, E. Lenzi, W.F. Costa,
V.C. Almeida, Preparation and characterization of AC from a
new raw lignocellulosic material: Flamboyant (Delonix regia)
pods, J. Environ. Manage., 92 (2011) 178–184.
- K.S.K. Reddy, A. Al Shoaibi, C. Srinivasakannan, A comparison
of microstructure and adsorption characteristics of ACs by CO2
and H3PO4 activation from date palm pits, New Carbon Mater.,
27 (2012) 344–351.
- Y.-b. Tang, Q. Liu, F.-y. Chen, Preparation and characterization
of AC from waste ramulus mori, Chem. Eng. J., 203 (2012)
19–24.
- T. Zhang, W.P. Walawender, L. Fan, M. Fan, D. Daugaard,
R. Brown, Preparation of AC from forest and agricultural
residues through CO2 activation, Chem. Eng. J., 105 (2004)
53–59.
- B. Sajjadi, W.Y. Chen, N.O. Egiebora, A comprehensive review
on physical activation of biochar for energy and environmental
application, Rev. Chem. Eng., 35 (2018) 1–42.
- N. Bouguedoura, M. Bennaceur, S. Babahani, S. E. Benziouche,
Date Palm Status and Perspective in Algeria, In: Date Palm
Genetic Resources and Utilization, Springer, Netherlands, 2015,
pp. 125–168.
- H. Boumediri, A. Bezazi, G.G. Del Pino, A. Haddad, F. Scarpa,
A. Dufresne, Extraction and characterization of vascular
bundle and fiber strand from date palm rachis as potential
bio-reinforcement in composite, Carbohydr. Polym., 222 (2019)
114997.
- F.M. Al-Oqla, O.Y. Alothman, M. Jawaid, S.M. Sapuan,
M.H. Es-Saheb, Processing and Properties of Date Palm Fibers
and Its Composites, In Biomass and Bioenergy, Springer,
Netherlands, 2014, pp. 1–25.
- M. Paradis, Rapport sur le commerce extérieur des dattes, 2017.
- S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in
multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
- K.S.W. Sing, Reporting physisorption data for gas/solid systems
with special reference to the determination of surface area and
porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985)
603–619.
- N.P. Dubinin, Work of Soviet biologists: theoretical genetics,
Science, 105 (1947) 109–112.
- Y. El Maguana, N. Elhadiri, M. Bouchdoug, M. Benchanaa,
Study of the influence of some factors on the preparation of
AC from walnut cake using the fractional factorial design,
J. Environ. Chem. Eng., 6 (2018) 1093–1099.
- F. Boudrahem, I. Yahiaoui, S. Saidi, K. Yahiaoui, L. Kaabache,
M. Zennache, F. Aissani-Benissad, Adsorption of pharmaceutical
residues on adsorbents prepared from olive stones using
mixture design of experiments model, Water Sci. Technol.,
80 (2019) 1–12.
- H.P. Boehm, Chemical Identification of Surface Groups, In:
D.D. Eley, H. Pines, P.B. Weisz, Eds., Advances in Catalysis,
Academic Press, Vol. 16, 1966, pp. 179–274.
- D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, AC from
jackfruit peel waste by H3PO4 chemical activation: pore
structure and surface chemistry characterization, Chem. Eng. J.,
140 (2008) 32–42.
- P. González-García, AC from lignocellulosics precursors: a
review of the synthesis methods, characterization techniques
and applications, Renewable Sustainable Energy Rev., 82 (2018)
1393–1414.
- M.J. Ahmed, Preparation of ACs from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments:
review, Process Saf. Environ. Protect., 102 (2016) 168–182.
- K.Y. Foo, B.H. Hameed, An overview of dye removal
via AC adsorption process, Desal. Wat. Treat., 19 (2010)
255–274.
- S. Afshin, Y. Rashtbari, M. Shirmardi, M. Vosoughi,
A. Hamzehzadeh, Adsorption of Basic Violet 16 dye from
aqueous solution onto mucilaginous seeds of Salvia sclarea:
kinetics and isotherms studies, Desal. Wat. Treat., 161 (2019)
365–375.
- A.M.A. Al-Haidary, F.H.H. Zanganah, S.R.F. Al-Azawi,
F.I. Khalili, A.H. Al-Dujaili, A study on using date palm fibers
and leaf base of palm as adsorbents for Pb (II) ions from its
aqueous solution, Water Air Soil Pollut., 214 (2011) 73–82.
- A. El Hanandeha, Z. Mahdi, M.S. Imtiaz, Modelling of the
adsorption of Pb, Cu and Ni ions from single and multicomponent
aqueous solutions by date seed derived biochar:
comparison of six machine learning approaches. Environ. Res.,
192 (2021) 110338.
- M.C. Silva, L. Spessato, T.L. Silva, G.K.P. Lopes, H.G. Zanella,
J.T.C. Yokoyama, A.L. Cazetta, V.C. Almeida, H3PO4–AC fibers
of high surface area from banana tree pseudo-stem fibers:
adsorption studies of methylene blue dye in batch and fixed
bed systems, J. Mol. Liq., 2020 (2020) 114771.
- C.H. Ooi, W.K. Cheah, Y.L. Sim, S.Y. Pung, F.Y. Yeoh, Conversion
and characterization of AC fiber derived from palm empty
fruit bunch waste and its kinetic study on urea adsorption,
J. Environ. Manage., 197 (2017) 199–205.
- S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory
of the van der Waals adsorption of gases, J. Am. Chem. Soc.,
62 (1940) 1723–1732.
- A. Aworn, P. Thiravetyan, W. Nakbanpote, Preparation and
characteristics of agricultural waste AC by physical activation
having micro-and mesopores, J. Anal. Appl. Pyrolysis,
82 (2008) 279–285.
- O. Belaid, A.A. Bebba, M.L. Sekirifa, L. Baameur,
A.H. Al-Dujaili, Preparation and characterization of chemically
ACs from different varieties of date stones, Desal. Wat. Treat.,
65 (2017) 267–273.
- M. Alhijazi, Q. Zeeshan, M. Safaei, M. Asmael, Z. Qin, Recent
developments in palm fibers composites: a review, J. Polym.
Environ., 28 (2020) 3029–3054.
- E. Galiwango, N.S.A. Rahman, A.H. Al-Marzouqi, M.M. Abu-
Omar, A.A. Khaleel, Isolation and characterization of cellulose
and α-cellulose from date palm biomass waste, Heliyon,
5 (2019) e02937.
- K. Riahi, B.B. Thayer, A.B. Mammou, A.B. Ammar,
M.H. Jaafoura, Biosorption characteristics of phosphates from
aqueous solution onto Phoenix dactylifera L. date palm fibers,
J. Hazard. Mater., 170 (2009) 511–519.
- H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics
of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007)
1781–1788.
- M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic
molecular structure of plant biomass-derived black carbon
(biochar), Environ. Sci. Technol., 44 (2010) 1247–1253.
- J. Coates, Interpretation of Infrared Spectra, a Practical
Approach. Encyclopedia of Analytical Chemistry: Applications,
Theory and Instrumentation, Wiley, New York, 2006.
- A.K. Mohammed, A.A. Abdulhassan, W.Y. Al-Meshhdany,
Biosorption of chromium ions from aqueous solutions by using
date palm fibers, Iraqi J. Biotechnol., 16 (2017) 8–14.
- F. Benstoem, G. Becker, F. Benstoem, G. Becker, J. Firk,
M. Kaless, D. Wuest, J. Pinnekamp, A. Kruse, Elimination
of micropollutants by AC produced from fibers taken from
wastewater screenings using hydrothermal carbonization,
J. Environ. Manage., 211 (2018) 278–286.
- Q. Abbas, M. Mirzaeian, A.A. Ogwu, M. Mazur, D. Gibson,
Effect of physical activation/surface functional groups on
wettability and electrochemical performance of carbon/AC aerogels based electrode materials for electrochemical
capacitors, Int. J. Hydrogen Energy, 45 (2020) 13586–13595.
- C.H. Giles, D. Smith, A. Huitson, A general treatment and
classification of the solute adsorption isotherm. I. Theoretical,
J. Colloid Interface Sci., 47 (1974) 755–765.