References

  1. Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on AC fibers, Chem. Eng. J., 157 (2010) 348–356.
  2. Y. Li, X. Hu, X. Liu, Y. Zhang, Q. Zhao, P. Ning, S. Tian, Adsorption behavior of phenol by reversible surfactantmodified montmorillonite: mechanism, thermodynamics, and regeneration, Chem. Eng. J., 334 (2018) 1214–1221.
  3. M.H. El-Naas, S. Al-Zuhair, M.A. Alhaija, Removal of phenol from petroleum refinery wastewater through adsorption on date-pit AC, Chem. Eng. J., 162 (2010) 997–1005.
  4. J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, Elsevier, Paris, 2013.
  5. M. Alshabanat, G. Alsenani, R. Almufarij, Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique, J. Chem., 2013 (2013) 210239.
  6. H. Marsh, F.R. Reinoso, Activated Carbon, Elsevier, 2006.
  7. R.C. Bansal, M. Goyal, AC Adsorption, Activated Carbon Adsorption, CRC Press, Taylor & Francis, London, 2005.
  8. G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Adsorptionoriented processes using conventional and non-conventional adsorbents for wastewater treatment, Green Adsorbents Pollut. Removal, 18 (2018) 23–71.
  9. R.I. Yousef, B. El-Eswed, H. Ala’a, Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies, Chem. Eng. J., 171 (2011) 1143–1149.
  10. R. Fang, H. Huang, J. Ji, M. He, Q. Feng, Y. Zhan, D.Y.C. Leung, Efficient MnOx supported on coconut shell AC for catalytic oxidation of indoor formaldehyde at room temperature, Chem. Eng. J., 334 (2018) 2050–2057.
  11. E. Díaz, A.F. Mohedano, L. Calvo, M.A. Gilarranz, J.A. Casas, J.J. Rodríguez, Hydrogenation of phenol in aqueous phase with palladium on AC catalysts, Chem. Eng. J., 131 (2007) 65–71.
  12. M. Yu, Y. Han, J. Li, L. Wang, CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors, Chem. Eng. J., 317 (2017) 493–502.
  13. L.A. Rodrigues, M.L.C.P. da Silva, M.O. Alvarez-Mendes, A. dos Reis Coutinho, G.P. Thim, Phenol removal from aqueous solution by AC produced from avocado kernel seeds, Chem. Eng. J., 174 (2011) 49–57.
  14. P. Girods, A. Dufour, V. Fierro, Y. Rogaume, C. Rogaume, A. Zoulalian, A. Celzard, ACs prepared from wood particleboard wastes: characterisation and phenol adsorption capacities, J. Hazard. Mater., 166 (2009) 491–501.
  15. F. Boudrahem, F. Aissani-Benissad, H. Aït-Amar, Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using AC developed from coffee residue activated with zinc chloride, J. Environ. Manage., 90 (2009) 3031–3039.
  16. R.U. Edgehill, G.Q. Lu, Adsorption characteristics of carbonized bark for phenol and pentachlorophenol, J. Chem. Technol. Biotechnol., 71 (1998) 27–34.
  17. B. Petrova, T. Budinova, B. Tsyntsarski, V. Kochkodan, Z. Shkavro, N. Petrov, Removal of aromatic hydrocarbons from water by AC from apricot stones, Chem. Eng. J., 165 (2010) 258–264.
  18. M.L. Sekirifa, M. Hadj-Mahammed, S. Pallier, L. Baameur, D. Richard, A.H. Al-Dujaili, Preparation and characterization of an AC from a date stones variety by physical activation with carbon dioxide, J. Anal. Appl. Pyrolysis, 99 (2013) 155–160.
  19. M.L. Sekirifa, S. Pallier, M. Hadj-Mahammed, D. Richard, L. Baameur, A.H. Al-Dujaili, Measurement of the performance of an agricultural residue-based AC aiming at the removal of 4-chlophenol from aqueous solutions, Energy Procedia, 36 (2013) 94–103.
  20. M. Abdulkarim, F.A. Al-Rub, Adsorption of lead ions from aqueous solution onto AC and chemically-modified AC prepared from date pits, Adsorpt. Sci. Technol., 22 (2004) 119–134.
  21. M. Belhachemi, Z. Belala, D. Lahcene, F. Addoun, Adsorption of phenol and dye from aqueous solution using chemically modified date pits ACs, Desal. Wat. Treat., 7 (2009) 182–190.
  22. M.T. Amin, A.A. Alazba, M. Shafiq, Adsorption of copper (Cu2+) from aqueous solution using date palm trunk fibre: isotherms and kinetics, Desal. Wat. Treat., 57 (2016) 22454–22466.
  23. S.M. Yakout, G.S. El-Deen, Characterization of AC prepared by phosphoric acid activation of olive stones, Arabian J. Chem., 9 (2016) S1155–S1162.
  24. C.A. Garcia, J.C.G. Moraes, E.M. Nogami, E. Lenzi, W.F. Costa, V.C. Almeida, Preparation and characterization of AC from a new raw lignocellulosic material: Flamboyant (Delonix regia) pods, J. Environ. Manage., 92 (2011) 178–184.
  25. K.S.K. Reddy, A. Al Shoaibi, C. Srinivasakannan, A comparison of microstructure and adsorption characteristics of ACs by CO2 and H3PO4 activation from date palm pits, New Carbon Mater., 27 (2012) 344–351.
  26. Y.-b. Tang, Q. Liu, F.-y. Chen, Preparation and characterization of AC from waste ramulus mori, Chem. Eng. J., 203 (2012) 19–24.
  27. T. Zhang, W.P. Walawender, L. Fan, M. Fan, D. Daugaard, R. Brown, Preparation of AC from forest and agricultural residues through CO2 activation, Chem. Eng. J., 105 (2004) 53–59.
  28. B. Sajjadi, W.Y. Chen, N.O. Egiebora, A comprehensive review on physical activation of biochar for energy and environmental application, Rev. Chem. Eng., 35 (2018) 1–42.
  29. N. Bouguedoura, M. Bennaceur, S. Babahani, S. E. Benziouche, Date Palm Status and Perspective in Algeria, In: Date Palm Genetic Resources and Utilization, Springer, Netherlands, 2015, pp. 125–168.
  30. H. Boumediri, A. Bezazi, G.G. Del Pino, A. Haddad, F. Scarpa, A. Dufresne, Extraction and characterization of vascular bundle and fiber strand from date palm rachis as potential bio-reinforcement in composite, Carbohydr. Polym., 222 (2019) 114997.
  31. F.M. Al-Oqla, O.Y. Alothman, M. Jawaid, S.M. Sapuan, M.H. Es-Saheb, Processing and Properties of Date Palm Fibers and Its Composites, In Biomass and Bioenergy, Springer, Netherlands, 2014, pp. 1–25.
  32. M. Paradis, Rapport sur le commerce extérieur des dattes, 2017.
  33. S. Brunauer, P.H. Emmett, E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60 (1938) 309–319.
  34. K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 57 (1985) 603–619.
  35. N.P. Dubinin, Work of Soviet biologists: theoretical genetics, Science, 105 (1947) 109–112.
  36. Y. El Maguana, N. Elhadiri, M. Bouchdoug, M. Benchanaa, Study of the influence of some factors on the preparation of AC from walnut cake using the fractional factorial design, J. Environ. Chem. Eng., 6 (2018) 1093–1099.
  37. F. Boudrahem, I. Yahiaoui, S. Saidi, K. Yahiaoui, L. Kaabache, M. Zennache, F. Aissani-Benissad, Adsorption of pharmaceutical residues on adsorbents prepared from olive stones using mixture design of experiments model, Water Sci. Technol., 80 (2019) 1–12.
  38. H.P. Boehm, Chemical Identification of Surface Groups, In: D.D. Eley, H. Pines, P.B. Weisz, Eds., Advances in Catalysis, Academic Press, Vol. 16, 1966, pp. 179–274.
  39. D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, AC from jackfruit peel waste by H3PO4 chemical activation: pore structure and surface chemistry characterization, Chem. Eng. J., 140 (2008) 32–42.
  40. P. González-García, AC from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications, Renewable Sustainable Energy Rev., 82 (2018) 1393–1414.
  41. M.J. Ahmed, Preparation of ACs from date (Phoenix dactylifera L.) palm stones and application for wastewater treatments: review, Process Saf. Environ. Protect., 102 (2016) 168–182.
  42. K.Y. Foo, B.H. Hameed, An overview of dye removal via AC adsorption process, Desal. Wat. Treat., 19 (2010) 255–274.
  43. S. Afshin, Y. Rashtbari, M. Shirmardi, M. Vosoughi, A. Hamzehzadeh, Adsorption of Basic Violet 16 dye from aqueous solution onto mucilaginous seeds of Salvia sclarea: kinetics and isotherms studies, Desal. Wat. Treat., 161 (2019) 365–375.
  44. A.M.A. Al-Haidary, F.H.H. Zanganah, S.R.F. Al-Azawi, F.I. Khalili, A.H. Al-Dujaili, A study on using date palm fibers and leaf base of palm as adsorbents for Pb (II) ions from its aqueous solution, Water Air Soil Pollut., 214 (2011) 73–82.
  45. A. El Hanandeha, Z. Mahdi, M.S. Imtiaz, Modelling of the adsorption of Pb, Cu and Ni ions from single and multicomponent aqueous solutions by date seed derived biochar: comparison of six machine learning approaches. Environ. Res., 192 (2021) 110338.
  46. M.C. Silva, L. Spessato, T.L. Silva, G.K.P. Lopes, H.G. Zanella, J.T.C. Yokoyama, A.L. Cazetta, V.C. Almeida, H3PO4–AC fibers of high surface area from banana tree pseudo-stem fibers: adsorption studies of methylene blue dye in batch and fixed bed systems, J. Mol. Liq., 2020 (2020) 114771.
  47. C.H. Ooi, W.K. Cheah, Y.L. Sim, S.Y. Pung, F.Y. Yeoh, Conversion and characterization of AC fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption, J. Environ. Manage., 197 (2017) 199–205.
  48. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62 (1940) 1723–1732.
  49. A. Aworn, P. Thiravetyan, W. Nakbanpote, Preparation and characteristics of agricultural waste AC by physical activation having micro-and mesopores, J. Anal. Appl. Pyrolysis, 82 (2008) 279–285.
  50. O. Belaid, A.A. Bebba, M.L. Sekirifa, L. Baameur, A.H. Al-Dujaili, Preparation and characterization of chemically ACs from different varieties of date stones, Desal. Wat. Treat., 65 (2017) 267–273.
  51. M. Alhijazi, Q. Zeeshan, M. Safaei, M. Asmael, Z. Qin, Recent developments in palm fibers composites: a review, J. Polym. Environ., 28 (2020) 3029–3054.
  52. E. Galiwango, N.S.A. Rahman, A.H. Al-Marzouqi, M.M. Abu- Omar, A.A. Khaleel, Isolation and characterization of cellulose and α-cellulose from date palm biomass waste, Heliyon, 5 (2019) e02937.
  53. K. Riahi, B.B. Thayer, A.B. Mammou, A.B. Ammar, M.H. Jaafoura, Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers, J. Hazard. Mater., 170 (2009) 511–519.
  54. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, 86 (2007) 1781–1788.
  55. M. Keiluweit, P.S. Nico, M.G. Johnson, M. Kleber, Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44 (2010) 1247–1253.
  56. J. Coates, Interpretation of Infrared Spectra, a Practical Approach. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, Wiley, New York, 2006.
  57. A.K. Mohammed, A.A. Abdulhassan, W.Y. Al-Meshhdany, Biosorption of chromium ions from aqueous solutions by using date palm fibers, Iraqi J. Biotechnol., 16 (2017) 8–14.
  58. F. Benstoem, G. Becker, F. Benstoem, G. Becker, J. Firk, M. Kaless, D. Wuest, J. Pinnekamp, A. Kruse, Elimination of micropollutants by AC produced from fibers taken from wastewater screenings using hydrothermal carbonization, J. Environ. Manage., 211 (2018) 278–286.
  59. Q. Abbas, M. Mirzaeian, A.A. Ogwu, M. Mazur, D. Gibson, Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/AC aerogels based electrode materials for electrochemical capacitors, Int. J. Hydrogen Energy, 45 (2020) 13586–13595.
  60. C.H. Giles, D. Smith, A. Huitson, A general treatment and classification of the solute adsorption isotherm. I. Theoretical, J. Colloid Interface Sci., 47 (1974) 755–765.