References
- C. Chaffei, K. Pageau, A. Suzuki, H. Gouia, M.H. Ghorbel,
C. Masclaux-Daubresse, Cadmium toxicity induced changes
in nitrogen management in Lycopersicon esculentum leading to
a metabolic safeguard through an amino acid storage strategy,
Plant Cell Physiol., 45 (2004) 1681–1693.
- J. Godt, F. Scheidig, C. Grosse-Siestrup, V. Esche, P. Brandenburg,
A. Reich, The toxicity of cadmium and resulting hazards for
human health, J. Occup. Med. Toxicol., 1 (2006) 22–22.
- L. Järup, A. Åkesson, Current status of cadmium as an
environmental health problem, Toxicol. Appl. Pharmacol.,
238 (2009) 201–208.
- R. Menhage-Bena, H. Kazemian, M. Ghazi-Khansari,
M. Hosseini, S. Shahtaheri, Evaluation of some natural zeolites
and their relevant synthetic types as sorbents for removal of
arsenic from drinking water, Iran. J. Public Health, 33 (2004) 36–44.
- S. Shevade, R.G. Ford, Use of synthetic zeolites for arsenate
removal from pollutant water, Water Res., 38 (2004) 3197–3204.
- V. Somerset, L. Petrik, E. Iwuoha, Alkaline hydrothermal
conversion of fly ash precipitates into zeolites 3: the removal of
mercury and lead ions from wastewater, J. Environ. Manage.,
87 (2008) 125–131.
- S.E. Bailey, T.J. Olin, R.M. Bricka, D.D. Adrian, A review of
potentially low-cost sorbents for heavy metals, Water Res.,
33 (1999) 2469–2479.
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:
a review, J. Environ. Manage., 92 (2011) 407–418.
- F.S. Zhang, J.O. Nriagu, H. Itoh, Mercury removal from water
using activated carbons derived from organic sewage sludge,
Water Res., 39 (2005) 389–395.
- V. Fthenakis, F. Lipfert, P. Moskowitz, L. Saroff, An assessment
of mercury emissions and health risks from a coal-fired power
plant, J. Hazard. Mater., 44 (1995) 267–283.
- T.T. Wałek, F. Saito, Q. Zhang, The effect of low solid/liquid
ratio on hydrothermal synthesis of zeolites from fly ash, Fuel,
87 (2008) 3194–3199.
- U.K. Chowdhury, B.K. Biswas, T.R. Chowdhury, G. Samanta,
B.K. Mandal, G.C. Basu, C.R. Chanda, D. Lodh, K.C. Saha,
S.K. Mukherjee, S. Roy, S. Kabir, Q. Quamruzzaman,
D. Chakraborti, Groundwater arsenic contamination in
Bangladesh and West Bengal, India, Environ. Health Perspect.,
108 (2000) 393–397.
- M. Vaclavikova, G.P. Gallios, S. Hredzak, S. Jakabsky, Removal
of arsenic from water streams: an overview of available
techniques, Clean Technol. Environ. Policy, 10 (2008) 89–95.
- Y.H. Xu, T. Nakajima, A. Ohki, Adsorption and removal of
arsenic(V) from drinking water by aluminum-loaded Shirasuzeolite,
J. Hazard. Mater., 92 (2002) 275–287.
- S. Wang, Z. Zhu, Characterisation and environmental
application of an Australian natural zeolite for basic dye
removal from aqueous solution, J. Hazard. Mater., 136 (2006)
946–952.
- G. Crini, Non-conventional low-cost adsorbents for dye
removal: a review, Bioresour. Technol., 97 (2006) 1061–1085.
- T. Robinson, G. Mcmullan, R. Marchant, P. Nigam, Remediation
of dyes in textile effluent: a critical review on current treatment
technologies with a proposed alternative, Bioresour. Technol.,
77 (2001) 247–255.
- S. Wang, M. Soudi, L. Li, Z. Zhu, Coal ash conversion into
effective adsorbents for removal of heavy metals and dyes from
wastewater, J. Hazard. Mater., 133 (2006) 243–251.
- A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, Studies on
the adsorption kinetics and isotherms for the removal and
recovery of Methyl orange from wastewaters using waste
materials, J. Hazard. Mater., 148 (2007) 229–240.
- M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption
of Methylene blue on low-cost adsorbents: a review, J. Hazard.
Mater., 177 (2010) 70–80.
- S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Equilibrium and
kinetic studies of Methyl orange and methyl violet adsorption
on activated carbon derived from Phragmites australis,
Desalination, 252 (2010) 149–156.
- N. Puvaneswari, J. Muthukrishnan, P. Gunasekaran, Toxicity
assessment and microbial degradation of azo dyes, Indian J.
Exp. Biol., 44 (2006) 618–626.
- M. Elizalde-Gonzalez, J. Mattusch, R. Wennrich, Application of
natural zeolites for preconcentration of arsenic species in water
samples, J. Environ. Monit., 3 (2001) 22–26.
- A. Nishino, Household appliances using catalysis, Catal. Today,
10 (1991) 107–118.
- A. Zorpas, T. Constantinides, A. Vlyssides, I. Haralambous,
M. Loizidou, Heavy metal uptake by natural zeolite and metals
partitioning in sewage sludge compost, Bioresour. Technol.,
72 (2000) 113–119.
- M. Elizalde-González, J. Mattusch, W.D. Einicke, R. Wennrich,
Sorption on natural solids for arsenic removal, Chem. Eng. J.,
81 (2001) 187–195.
- Y.H. Xu, T. Nakajima, A. Ohki, Adsorption and removal of
arsenic(V) from drinking water by aluminum-loaded Shirasuzeolite,
J. Hazard. Mater., 92 (2002) 275–287.
- M.S. Onyango, D. Kuchar, M. Kubota, H. Matsuda, Adsorptive
removal of phosphate ions from aqueous solution using
synthetic zeolite, Ind. Eng. Chem. Res., 46 (2007) 894–900.
- A. Wight, M. Davis, Design and preparation of organicinorganic
hybrid catalysts, Chem. Rev., 102 (2002) 3589–3614.
- B.Y.S. Al-Zaidi, The Effect of Modification Techniques on the
Performance of Zeolite-Y Catalysts in Hydrocarbon Cracking
Reactions, Thesis, University of Manchester, 2011.
- X. Li, E. Iglesia, Pt/[Fe] ZSM-5 modified by Na and Cs cations: an
active and selective catalyst for dehydrogenation of n-alkanes
to n-alkenes, Chem. Commun., 5 (2008) 594–596.
- L. Guczi, I. Kiricsi, Zeolite supported mono-and bimetallic
systems: structure and performance as CO hydrogenation
catalysts, Appl. Catal., A, 186 (1999) 375–394.
- J. Guzman, B.C. Gates, Supported molecular catalysts: metal
complexes and clusters on oxides and zeolites, Dalton Trans.,
17 (2003) 3303–3318.
- S. Recchia, C. Dossi, A. Fusi, L. Sordelli, R. Psaro, Zeolitesupported
metals by design: organometallic-based tinpromoted
rhodium/NaY catalysts, Appl. Catal., A, 182 (1999)
41–51.
- M. Hartmann, L. Kevan, Substitution of transition metal
ions into aluminophosphates and silicoaluminophosphates:
characterization and relation to catalysis, Res. Chem. Intermed.,
28 (2002) 625–695.
- F. Fan, Z. Feng, C. Li, UV Raman spectroscopic studies on active
sites and synthesis mechanisms of transition metal-containing
microporous and mesoporous materials, Acc. Chem. Res.,
43 (2009) 378–387.
- Y. Meng, H.C. Genuino, C.H. Kuo, H. Huang, S.Y. Chen,
L. Zhang, A. Rossi, S.L. Suib, One-step hydrothermal synthesis
of manganese-containing MFI-type zeolite, Mn–ZSM-5,
characterization, and catalytic oxidation of hydrocarbons,
J. Am. Chem. Soc., 135 (2013) 8594–8605.
- G.A. Eimer, L.B. Pierella, G.A. Monti, O.A. Anunziata,
Synthesis and characterization of Al-MCM-41 and
Al-MCM-48
mesoporous materials, Catal. Lett., 78 (2002) 65–75.
- G. Vitale, H. Molero, E. Hernandez, S. Aquino, V. Birss,
P. Pereira-Almao, One-pot preparation and characterization
of bifunctional Ni-containing ZSM-5 catalysts, Appl. Catal., A,
452 (2013) 75–87.
- E. Yuan, W. Han, G. Zhang, K. Zhao, Z. Mo, G. Lu, Z. Tang,
Structural and textural characteristics of
Zn-containing ZSM-5
zeolites and application for the selective catalytic reduction
of NOx with NH3 at high temperatures, Catal. Surv. Asia,
20 (2016) 41–52.
- M.M. Forde, R.D. Armstrong, C. Hammond, Q. He, R.L. Jenkins,
S.A. Kondrat, N. Dimitratos, J.A. Lopez-Sanchez, S.H. Taylor,
D. Willock, C.J. Kiely, G.J. Hutchings, Partial oxidation of
ethane to oxygenates using Fe- and
Cu-containing ZSM-5,
J. Am. Chem. Soc., 135 (2013) 11087–11099.
- G. Carja, G.Delahay, C. Signorile, B. Coq, Fe–Ce–ZSM-5 a new
catalyst of outstanding properties in the selective catalytic
reduction of NO with NH3, Chem. Commun., 12 (2004)
1404–1405.
- S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Effect of
structural and preparation parameters on the activity and
hydrothermal stability of metal-exchanged ZSM-5 in the
selective catalytic reduction of NO by NH3, Ind. Eng. Chem.
Res., 50 (2011) 4308–4319.
- O.D. Ozdemir, S. Pişkin, Zeolite X synthesis with different
sources, Int. J. Chem. Environ. Biol. Sci., 1 (2013) 229–232.
- S. Özvatan, Y. YÜrÜm, Synthesis of crystalline ZSM-5 type
zeolites utilizing primary monoalkylamines 1. Characterization,
Energy Sources, 23 (2001) 475–485.
- K. Motazedi, Template-Free Synthesis and Modification of
LTY, ZSM-5 and LTL Zeolite Catalysts and Investigation of
the Catalytic Pyrolysis of Saskatchewan Boundary Dam Coal,
Thesis, University of Calgary, 2013.
- W. Mozgawa, The influence of some heavy metals cations on
the FTIR spectra of zeolites, J. Mol. Struct., 555 (2000) 299–304.
- R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi,
N.A. Kassim, A.N. Jassim, Synthesis of zinc oxide nanoparticles
via sol–gel route and their characterization, Nanosci.
Nanotechnol., 5 (2015) 1–6.
- S. Verma, S.L. Jain, Nanosized zinc peroxide (ZnO2): a novel
inorganic oxidant for the oxidation of aromatic alcohols to
carbonyl compounds, Inorg. Chem. Front., 7 (2014) 534–539.
- I. Markova-Deneva, Infrared spectroscopy investigation of
metallic nanoparticles based on copper, cobalt, and nickel
synthesized through borohydride reduction method, J. Univ.
Chem. Technol. Metall., 45 (2010) 351–378.
- V. Parthasarathi, G. Thilagavathi, Synthesis and characterization
of zinc oxide nanoparticle and its application on fabrics for
microbe resistant defence clothing, J. Pharm. Pharm. Sci.,
3 (2011) 392–398.
- G. Donny, Synthesis and Characterization of Cu/Ni-zeolites-A
for the Direct Conversion of Methane to Liquid Hydrocarbon,
Universiti Malaysia Pahang, Thesis, 2008.
- H. Kumar, R. Rani, Structural and optical characterization
of ZnO nanoparticles synthesized by microemulsion route,
Int. Lett. Chem. Phys. Astron., 19 (2013) 26–36.
- S. Cheng, D. Yan, J. Chen, R. Zhuo, J. Feng, H. Li, H.T. Feng,
P.X. Yan, Soft-template synthesis and characterization of
ZnO2 and ZnO hollow spheres, J. Phys. Chem. C, 113 (2009)
13630–13635.
- Y. Zhang, Y. Zhou, L. Huang, M. Xue, S. Zhang, Sn-modified
ZSM-5 as support for platinum catalyst in propane
dehydrogenation, Ind. Eng. Chem. Res., 50 (2011) 7896–7902.
- A. Hagen, K.H. Hallmeier, C. Hennig, R. Szargan, T. Inui,
F. Roessner, State of zinc in MFI type zeolites characterized by
XANES and EXAFS, Stud. Surf. Sci. Catal., 94 (1995) 195–202.
- B. Notari, Microporous crystalline titanium silicates, Adv.
Catal., 41 (1996) 253–334.
- S. Srivastava, Synthesis and characterisation of copper oxide
nanoparticles, IOSR J. Appl. Phys., 5 (2013) 61–65.
- K. Arun, A. Batra, A. Krishna, K. Bhat, M. Aggarwal, J. Francis,
Surfactant free hydrothermal synthesis of copper oxide
nanoparticles, Am. J. Mater. Sci., 5 (2015) 36–38.
- B.E. Alver, M. Sakizci, E. Yörükoğullari, Investigation of
clinoptilolite rich natural zeolites from Turkey: a combined
XRF, TG/DTG, DTA and DSC study, J. Therm. Anal. Calorim.,
100 (2010) 19–26.
- M. Sánchez, P. Gamero, D. Cortés, Bioactivity assessment of
ZSM-5 type zeolite functionalized with silver or zinc, Mater.
Lett., 74 (2012) 250–253.
- M. Hassani, G.D. Najafpour, M. Mohammadi, M. Rabiee,
Preparation, characterization and application of zeolite-based
catalyst for production of biodiesel from waste cooking oil,
J. Sci. Ind. Res., 73 (2014) 129–133.
- K. Yamamoto, Y. Nohara, Y. Domon, Y. Takahashi, Y. Sakata,
J. Plévert, T. Tatsumi, Organic–inorganic hybrid zeolites with
framework organic groups, Chem. Mater., 17 (2005) 3913–3920.
- R.M.R. Kulkarni, G. Srinikethan, K. Vidyashetty, Equilibrium
and kinetic studies for the adsorption of cadmium ion on zeolite
4A, J. Biochem. Technol., 3 (2014) 158–160.
- J. Aguado, D. Serrano, J. Escola, J. Rodríguez, Low temperature
synthesis and properties of ZSM-5 aggregates formed by ultrasmall
nanocrystals, Microporous Mesoporous Mater., 75 (2004)
41–49.
- I.L. Lagadic, M.K. Mitchell, B.D. Payne, Highly effective
adsorption of heavy metal ions by a thiol-functionalized
magnesium phyllosilicate clay, Environ. Sci. Technol., 35 (2001)
984–990.