References
- O. Monnereau, L. Tortet, P. Llewellyn, F. Rouquerol,
G. Vacquier, Synthesis of Bi2O3 by controlled transformation
rate thermal analysis: a new route for this oxide?, Solid State
Ionics, 157 (2003) 163–169.
- S.S. Bhande, R.S. Mane, A.V. Ghule, S.H. Han, A bismuth
oxide nanoplate-based carbon dioxide gas sensor, Scr. Mater.,
65 (2011) 1081–1084.
- N.V. Skorodumova, A.K. Jonsson, M. Herranen, M. Strømme,
G.A. Niklasson, B. Johansson, S.I. Simak, Random conductivity
of δ-Bi2O3 films, Appl. Phys. Lett., 86 (2005) 241910,
doi: 10.1063/1.1948516.
- M.A. De la Rubia, M. Peiteado, J.F. Fernandez, A.C. Caballero,
Compact shape as a relevant parameter for sintering ZnO–Bi2O3
based varistors, J. Eur. Ceram. Soc., 24 (2004) 1209–1212.
- L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu,
Sonochemical synthesis of nanocrystallite Bi2O3 as a visible light-driven photocatalyst, Appl. Catal., A, 308 (2006) 105–110.
- Y. Wang, J. Zhao, Z. Wang, A simple low-temperature fabrication
of oblique prism-like bismuth oxide via a one-step aqueous
process, Colloids Surf., A, 377 (2011) 409–413.
- Y. Polat, Comments on “Reduced band gap & charge
recombination rate in Se doped α-Bi2O3 leads to enhanced
photoelectrochemical and photocatalytic performance:
theoretical & experimental insight”, Int. J. Hydrogen Energy,
42 (2017) 20638–20648.
- C. Wu, L. Shen, Q. Huang, Y.C. Zhang, Hydrothermal synthesis
and characterization of Bi2O3 nanowires, Mater. Lett., 65 (2011)
1134–1136.
- R. Hernandez-Delgadillo, D. Velasco-Arias, J.J. Martinez-Sanmiguel, D. Diaz, I. Zumeta-Dube, K. Arevalo-Niño,
C. Cabral-Romero, Bismuth oxide aqueous colloidal nanoparticles inhibit
Candida albicans growth and biofilm formation, Int. J. Nanomed.,
8 (2013) 1645, doi: 10.2147/IJN.S38708.
- Y. Astuti, R. Andianingrum, A. Haris, A. Darmawan, The
role of H2C2O4 and Na2CO3 as precipitating agents on the
physichochemical properties and photocatalytic activity of
bismuth oxide, Open Chem., 18 (2020) 129–137.
- Y. Astuti, A.D. Wulansari, A. Haris, A. Darmawan, R. Balgis,
Physicochemical properties and photocatalytic activity of
bismuth oxide as affected by weak or strong base precipitants,
Songklanakarin J. Sci. Technol., 43 (2021) 608–614.
- Y. Astuti, A. Fauziyah, S. Nurhayati, A.D. Wulansari,
R. Andianingrum, A.R. Hakim, G. Bhaduri, Synthesis of
α-bismuth oxide using solution combustion method and its
photocatalytic properties, IOP Conf. Ser.: Mater. Sci. Eng.,
107 (2016) 012006.
- Y. Astuti, D. Amri, D.S. Widodo, H. Widiyandari, R. Balgis,
T. Ogi, Effect of fuels on the physicochemical properties and
photocatalytic activity of bismuth oxide, synthesized using
solution combustion method, Int. J. Technol., 11 (2020) 26–36.
- Y. Astuti, P.P. Elesta, D.S. Widodo, H. Widiyandari, R. Balgis,
Hydrazine and urea fueled-solution combustion method for
Bi2O3 synthesis: characterization of physicochemical properties
and photocatalytic activity, Bull. Chem. React. Catal., 15 (2020)
104–111.
- M. Anilkumar, R. Pasricha, V. Ravi, Synthesis of bismuth oxide
nanoparticles by citrate gel method, Ceram. Int., 31 (2005)
889–891.
- Y. Astuti, B.M. Listyani, L. Suyati, A. Darmawan, Bismuth oxide
prepared by sol-gel method: variation of physicochemical
characteristics and photocatalytic activity due to difference in
calcination temperature, Indones. J. Chem., 21 (2021) 108–117.
- B.B. Das, A. Srinivassan, M. Yogapriya, M.R. Kongara,
A. Punnoose, Sol–gel synthesis and characterization of xCuO–(1 − x)Bi2O3 (0.15 ≤ x ≤ 0.55) glasses by magnetic and spectral
studies, J. Non-Cryst. Solids, 427 (2015) 146–151.
- A.K. Alves, C.P. Bergmann, F.A. Berutti, Novel Synthesis and
Characterization of Nanostructured Materials, Springer, Berlin,
2016.
- L.D. Jadhav, S.P. Patil, A.P. Jamale, A.U. Chavan, Solution
combustion synthesis: role of oxidant to fuel ratio on powder
properties, Mater. Sci. Forum, 757 (2013) 85–98.
- J. Liu, D. Wang, P. Dong, J. Zhao, Q. Meng, Y. Zhang, X. Li, Effect
of glycine-to-nitrate ratio on solution combustion synthesis
of ZnFe2O4 as anode materials for lithium ion batteries, Int. J.
Electrochem. Sci., 12 (2017) 3741–3755.
- A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar,
Combustion synthesis of cobalt ferrite nanoparticles—influence
of fuel to oxidizer ratio, J. Alloys Compd., 514 (2012) 91–96.
- Y. Astuti, A. Fauziyah, H. Widiyandari, D. Widodo, Studying
impact of citric acid-bismuth nitrate pentahydrate ratio on
photocatalytic activity of bismuth oxide prepared by solution
combustion method, Rasayan J. Chem., 12 (2019) 2210–2217.
- J. La, Y. Huang, G. Luo, J. Lai, C. Liu, G. Chu, Synthesis of
bismuth oxide nanoparticles by solution combustion method,
Part. Sci. Technol., 31 (2013) 287–290.
- S.P. Patil, V.S. Shrivastava, G.H. Sonawane, S.H. Sonawane,
Synthesis of novel Bi2O3–montmorillonite nanocomposite with
enhanced photocatalytic performance in dye degradation,
J. Environ. Chem. Eng., 3 (2015) 2597–2603.
- D. Levy, M. Zayat, The Sol-Gel Handbook, 3 Volume Set:
Synthesis, Characterization and Applications, John Wiley &
Sons, Weinheim, 2015.
- K. Deshpande, A. Mukasyan, A. Varma, Direct synthesis of
iron oxide nanopowders by the combustion approach: reaction
mechanism and properties, Chem. Mater., 16 (2004) 4896–4904.
- N. Eastaugh, V. Walsh, T. Chaplin, R. Siddall, Pigment
Compendium: A Dictionary and Optical Microscopy of Historic
Pigments (Colors Paint Art), Elsevier, 2008.
- D.W. Richerson, Modern Ceramic Engineering: Properties,
Processing, and Use in Design, CRC Press, Utah, 2005.
- R. Branquinho, A. Santa, E. Carlos, D. Salgueiro, P. Barquinha,
R. Martins, E. Fortunato, Solution Combustion Synthesis:
Applications in Oxide Electronics, Chapter in Developments in
Combustion Technology, InTechOpen, London, 2016.
- S. Bandyopadhyay, A. Dutta, Thermal, optical and dielectric
properties of phase stabilized δ–Dy-Bi2O3 ionic conductors,
J. Phys. Chem. Solids, 102 (2017) 12–20.
- W. Raza, M.M. Haque, M. Muneer, T. Harada, M. Matsumura,
Synthesis, characterization and photocatalytic performance
of visible light induced bismuth oxide nanoparticle, J. Alloys
Compd., 648 (2015) 641–650.
- D.W. Barnum, Some history of nitrates, J. Chem. Educ.,
80 (2003) 1393.
- C.M. Bedoya Hincapie, M.J. Pinzon Cardenas, J.E. Alfonso
Orjuela, E. Restrepo Parra, J.J. Olaya Florez, Physicalchemical
properties of bismuth and bismuth oxides: synthesis,
characterization and applications, Dyna, 79 (2012) 139–148.
- A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan,
Solution combustion synthesis of nanoscale materials, Chem.
Rev., 116 (2016) 14493–14586.
- J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, H. Zhu, In situ
synthesis of α–β phase heterojunction on Bi2O3 nanowires
with exceptional visible-light photocatalytic performance,
Appl. Catal., B, 142 (2013) 504–511.
- T.A. Gadhi, A. Hernández-Gordillo, M. Bizarro, P. Jagdale,
A. Tagliaferro, S.E. Rodil, Efficient α/β-Bi2O3 composite for the
sequential photodegradation of two-dyes mixture, Ceram. Int.,
42 (2016) 13065–13073.
- K. Spalding, F. Bonnier, C. Bruno, H. Blasco, R. Board, I. Benz-de
Bretagne, H.J. Byrne, H.J. Butler, I. Chourpa, P. Radhakrishnan,
M.J. Baker, Enabling quantification of protein concentration
in human serum biopsies using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, Vib.
Spectrosc., 99 (2018) 50–58.
- S. Labib, Preparation, characterization and photocatalytic
properties of doped and undoped Bi2O3, J. Saudi Chem. Soc.,
21 (2017) 664–672.