References

  1. O. Monnereau, L. Tortet, P. Llewellyn, F. Rouquerol, G. Vacquier, Synthesis of Bi2O3 by controlled transformation rate thermal analysis: a new route for this oxide?, Solid State Ionics, 157 (2003) 163–169.
  2. S.S. Bhande, R.S. Mane, A.V. Ghule, S.H. Han, A bismuth oxide nanoplate-based carbon dioxide gas sensor, Scr. Mater., 65 (2011) 1081–1084.
  3. N.V. Skorodumova, A.K. Jonsson, M. Herranen, M. Strømme, G.A. Niklasson, B. Johansson, S.I. Simak, Random conductivity of δ-Bi2O3 films, Appl. Phys. Lett., 86 (2005) 241910, doi: 10.1063/1.1948516.
  4. M.A. De la Rubia, M. Peiteado, J.F. Fernandez, A.C. Caballero, Compact shape as a relevant parameter for sintering ZnO–Bi2O3 based varistors, J. Eur. Ceram. Soc., 24 (2004) 1209–1212.
  5. L. Zhang, W. Wang, J. Yang, Z. Chen, W. Zhang, L. Zhou, S. Liu, Sonochemical synthesis of nanocrystallite Bi2O3 as a visible light-driven photocatalyst, Appl. Catal., A, 308 (2006) 105–110.
  6. Y. Wang, J. Zhao, Z. Wang, A simple low-temperature fabrication of oblique prism-like bismuth oxide via a one-step aqueous process, Colloids Surf., A, 377 (2011) 409–413.
  7. Y. Polat, Comments on “Reduced band gap & charge recombination rate in Se doped α-Bi2O3 leads to enhanced photoelectrochemical and photocatalytic performance: theoretical & experimental insight”, Int. J. Hydrogen Energy, 42 (2017) 20638–20648.
  8. C. Wu, L. Shen, Q. Huang, Y.C. Zhang, Hydrothermal synthesis and characterization of Bi2O3 nanowires, Mater. Lett., 65 (2011) 1134–1136.
  9. R. Hernandez-Delgadillo, D. Velasco-Arias, J.J. Martinez-Sanmiguel, D. Diaz, I. Zumeta-Dube, K. Arevalo-Niño,
    C. Cabral-Romero, Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation, Int. J. Nanomed., 8 (2013) 1645, doi: 10.2147/IJN.S38708.
  10. Y. Astuti, R. Andianingrum, A. Haris, A. Darmawan, The role of H2C2O4 and Na2CO3 as precipitating agents on the physichochemical properties and photocatalytic activity of bismuth oxide, Open Chem., 18 (2020) 129–137.
  11. Y. Astuti, A.D. Wulansari, A. Haris, A. Darmawan, R. Balgis, Physicochemical properties and photocatalytic activity of bismuth oxide as affected by weak or strong base precipitants, Songklanakarin J. Sci. Technol., 43 (2021) 608–614.
  12. Y. Astuti, A. Fauziyah, S. Nurhayati, A.D. Wulansari, R. Andianingrum, A.R. Hakim, G. Bhaduri, Synthesis of α-bismuth oxide using solution combustion method and its photocatalytic properties, IOP Conf. Ser.: Mater. Sci. Eng., 107 (2016) 012006.
  13. Y. Astuti, D. Amri, D.S. Widodo, H. Widiyandari, R. Balgis, T. Ogi, Effect of fuels on the physicochemical properties and photocatalytic activity of bismuth oxide, synthesized using solution combustion method, Int. J. Technol., 11 (2020) 26–36.
  14. Y. Astuti, P.P. Elesta, D.S. Widodo, H. Widiyandari, R. Balgis, Hydrazine and urea fueled-solution combustion method for Bi2O3 synthesis: characterization of physicochemical properties and photocatalytic activity, Bull. Chem. React. Catal., 15 (2020) 104–111.
  15. M. Anilkumar, R. Pasricha, V. Ravi, Synthesis of bismuth oxide nanoparticles by citrate gel method, Ceram. Int., 31 (2005) 889–891.
  16. Y. Astuti, B.M. Listyani, L. Suyati, A. Darmawan, Bismuth oxide prepared by sol-gel method: variation of physicochemical characteristics and photocatalytic activity due to difference in calcination temperature, Indones. J. Chem., 21 (2021) 108–117.
  17. B.B. Das, A. Srinivassan, M. Yogapriya, M.R. Kongara, A. Punnoose, Sol–gel synthesis and characterization of xCuO–(1 − x)Bi2O3 (0.15 ≤ x ≤ 0.55) glasses by magnetic and spectral studies, J. Non-Cryst. Solids, 427 (2015) 146–151.
  18. A.K. Alves, C.P. Bergmann, F.A. Berutti, Novel Synthesis and Characterization of Nanostructured Materials, Springer, Berlin, 2016.
  19. L.D. Jadhav, S.P. Patil, A.P. Jamale, A.U. Chavan, Solution combustion synthesis: role of oxidant to fuel ratio on powder properties, Mater. Sci. Forum, 757 (2013) 85–98.
  20. J. Liu, D. Wang, P. Dong, J. Zhao, Q. Meng, Y. Zhang, X. Li, Effect of glycine-to-nitrate ratio on solution combustion synthesis of ZnFe2O4 as anode materials for lithium ion batteries, Int. J. Electrochem. Sci., 12 (2017) 3741–3755.
  21. A.B. Salunkhe, V.M. Khot, M.R. Phadatare, S.H. Pawar, Combustion synthesis of cobalt ferrite nanoparticles—influence of fuel to oxidizer ratio, J. Alloys Compd., 514 (2012) 91–96.
  22. Y. Astuti, A. Fauziyah, H. Widiyandari, D. Widodo, Studying impact of citric acid-bismuth nitrate pentahydrate ratio on photocatalytic activity of bismuth oxide prepared by solution combustion method, Rasayan J. Chem., 12 (2019) 2210–2217.
  23. J. La, Y. Huang, G. Luo, J. Lai, C. Liu, G. Chu, Synthesis of bismuth oxide nanoparticles by solution combustion method, Part. Sci. Technol., 31 (2013) 287–290.
  24. S.P. Patil, V.S. Shrivastava, G.H. Sonawane, S.H. Sonawane, Synthesis of novel Bi2O3–montmorillonite nanocomposite with enhanced photocatalytic performance in dye degradation, J. Environ. Chem. Eng., 3 (2015) 2597–2603.
  25. D. Levy, M. Zayat, The Sol-Gel Handbook, 3 Volume Set: Synthesis, Characterization and Applications, John Wiley & Sons, Weinheim, 2015.
  26. K. Deshpande, A. Mukasyan, A. Varma, Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties, Chem. Mater., 16 (2004) 4896–4904.
  27. N. Eastaugh, V. Walsh, T. Chaplin, R. Siddall, Pigment Compendium: A Dictionary and Optical Microscopy of Historic Pigments (Colors Paint Art), Elsevier, 2008.
  28. D.W. Richerson, Modern Ceramic Engineering: Properties, Processing, and Use in Design, CRC Press, Utah, 2005.
  29. R. Branquinho, A. Santa, E. Carlos, D. Salgueiro, P. Barquinha, R. Martins, E. Fortunato, Solution Combustion Synthesis: Applications in Oxide Electronics, Chapter in Developments in Combustion Technology, InTechOpen, London, 2016.
  30. S. Bandyopadhyay, A. Dutta, Thermal, optical and dielectric properties of phase stabilized δ–Dy-Bi2O3 ionic conductors, J. Phys. Chem. Solids, 102 (2017) 12–20.
  31. W. Raza, M.M. Haque, M. Muneer, T. Harada, M. Matsumura, Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle, J. Alloys Compd., 648 (2015) 641–650.
  32. D.W. Barnum, Some history of nitrates, J. Chem. Educ., 80 (2003) 1393.
  33. C.M. Bedoya Hincapie, M.J. Pinzon Cardenas, J.E. Alfonso Orjuela, E. Restrepo Parra, J.J. Olaya Florez, Physicalchemical properties of bismuth and bismuth oxides: synthesis, characterization and applications, Dyna, 79 (2012) 139–148.
  34. A. Varma, A.S. Mukasyan, A.S. Rogachev, K.V. Manukyan, Solution combustion synthesis of nanoscale materials, Chem. Rev., 116 (2016) 14493–14586.
  35. J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, H. Zhu, In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance, Appl. Catal., B, 142 (2013) 504–511.
  36. T.A. Gadhi, A. Hernández-Gordillo, M. Bizarro, P. Jagdale, A. Tagliaferro, S.E. Rodil, Efficient α/β-Bi2O3 composite for the sequential photodegradation of two-dyes mixture, Ceram. Int., 42 (2016) 13065–13073.
  37. K. Spalding, F. Bonnier, C. Bruno, H. Blasco, R. Board, I. Benz-de Bretagne, H.J. Byrne, H.J. Butler, I. Chourpa, P. Radhakrishnan, M.J. Baker, Enabling quantification of protein concentration in human serum biopsies using attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, Vib. Spectrosc., 99 (2018) 50–58.
  38. S. Labib, Preparation, characterization and photocatalytic properties of doped and undoped Bi2O3, J. Saudi Chem. Soc., 21 (2017) 664–672.