References

  1. N. Adimalla, J. Chen, H. Qian, Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: a case study from an urban region of South India, Ecotoxicol. Environ. Saf., 194 (2020) 110406, doi: 10.1016/j.ecoenv.2020.110406.
  2. X.J. Long, X. Wang, X.J. Guo, M.C. He, A review of removal technology for antimony in aqueous solution, J. Environ. Sci., 90 (2020) 189–204.
  3. B. Jabłońska, Optimization of Ni(II), Pb(II), and Zn(II) ion adsorption conditions on Pliocene clays
    from post-mining waste, Miner., 11 (2021) 568, doi: 10.3390/min11060568.
  4. H. Yankovych, V. Novoseltseva, O. Kovalenko, D.M. Behunova, M. Kanuchova, M. Vaclavikova, I. Melnyk, New perception of Zn(II) and Mn(II) removal mechanism on sustainable sunflower biochar from alkaline batteries contaminated water, J. Environ. Manage., 292 (2021) 112757, doi: 10.1016/j.jenvman.2021.112757.
  5. X.H. Wang, Z.F. Zhang, R.Z. Sun, H.Q. Xie, L.G. Yao, Highefficiency removal of low-concentration Hg(II) from aqueous solution by bentonite nanocomposite: batch and fixed-bed column adsorption study, Sep. Sci. Technol., 56 (2021) 2204–2216.
  6. S. Ramola, N. Rawat, A.K. Shankhwar, R.K. Srivastava, Fixed bed adsorption of Pb and Cu by iron modified bamboo, bagasse and tyre biochar, Sustainable Chem. Pharm., 22 (2021) 100486, doi:10.1016/j.scp.2021.100486.
  7. D.F. Wang, C. Yi, M. Xu, J.S. Park, D. Kim, C.H. Shin, M.H. Ryu, Y.F. Zhao, Adsorption of As(III) and As(V) by using the Fenton reaction modified kapok fiber, J. Environ. Chem. Eng., 9 (2021) 105918, doi:10.1016/j.jece.2021.105918.
  8. A. Herath, C.A. Layne, F. Perez, E.B. Hassan, C.U. Pittman, T.E. Mlsna, KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(VI), Pb(II) and Cd(II), Chemosphere, 269 (2021) 128409, doi:10.1016/j.chemosphere.2020.128409.
  9. G. Sharma, Mu. Naushad, Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modelling, J. Mol. Liq., 310 (2020) 113025, doi:10.1016/j.molliq.2020.113025.
  10. Ihsanullah, F.A. Al-Khaldi, B. Abusharkh, M. Khaled, M.A. Atieh, M.S. Nasser, T. Laoui, T.A. Saleh, S. Agarwal,
    I. Tyagi, V.K. Gupta, Adsorptive removal of cadmium(II) ions from liquid phase using acid modified
    carbon-based adsorbents, J. Mol. Liq., 204 (2015) 255–263.
  11. C.K. Rojas-Mayorga, D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, J. Silvestre-Albero, Tailoring the adsorption behavior of bone char for heavy metal removal from aqueous solution, Adsorpt. Sci. Technol., 34 (2016) 368–387.
  12. S.A. Begum, A.H.M.G. Hyder, N. Vahdat, Adsorption isotherm and kinetic studies of As(V) removal from aqueous solution using cattle bone char, J. Water Supply Res. Technol. AQUA, 65 (2016) 244–252.
  13. J.V. Flores-Cano, R. Leyva-Ramos, F. Carrasco-Marin, A. Aragon-Pina, J.J. Salazar-Rabago, S. Leyva-Ramos, Adsorption mechanism of chromium(III) from water solution on bone char: effect of operating conditions, Adsorption, 22 (2016) 297–308.
  14. M.E. Maria, M.B. Mansur, Mathematical modeling of batch adsorption of manganese onto bone char, Braz. J. Chem. Eng., 33 (2016) 373–382.
  15. M.E. Maria, M.B. Mansur, Mathematical modeling of manganese adsorption onto bone char in a continuous fixed bed column incorporating backmixing and shriking core approaches, Braz. J. Chem. Eng., 34 (2017) 901–909.
  16. R.D.C. Soltani, M. Safari, A. Maleki, R. Rezaee, B. Shahmoradi, S. Shahmohammadi, E. Ghahramani, Decontamination of arsenic(V)-contained liquid phase utilizing Fe3O4/bone char nanocomposite encapsulated in chitosan biopolymer, Environ. Sci. Pollut. Res., 24 (2017) 15157–15166.
  17. L.E. Hernandez-Hernandez, A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, Antagonistic binary adsorption of heavy metals using stratified bone char columns, J. Mol. Liq., 241 (2017) 334–346.
  18. J.I. Martins, J.J.M. Orfao, O.S.G.P. Soares, Sorption of copper, nickel and cadmium on bone char, Prot. Met. Phys. Chem. Surf., 53 (2017) 618–627.
  19. N. Ranjbar, S. Hashemi, B. Ramavandi, M. Ravanipour, Chromium(VI) removal by bone char-ZnO composite: parameters optimization by response surface methodology and modeling, Environ. Prog. Sustainable Energy, 37 (2018) 1684–1695.
  20. L. Sellaoui, D.I. Mendoza-Castillo, H.E. Reynel-Avila, A. Bonilla-Petriciolet, A.B. Lamine, A. Erto, A new statistical physics model for the ternary adsorption of Cu2+, Cd2+ and Zn2+ ions on bone char: experimental investigation and simulations, Chem. Eng. J., 343 (2018) 544–553.
  21. F.A. Gordillo-Ruiz, F.J. Sanchez-Ruiz, D.I. Mendoza-Castillo, H.E. Reynel-Avila, A. Bonilla-Petriciolet, Dynamic fuzzy neural network for simulating the fixed-bed adsorption of cadmium, nickel, and zinc on bone char, Int. J. Environ. Sci. Technol., 15 (2018) 915–926.
  22. J.H. Park, J.J. Wang, S.H. Kim, S.W. Kang, J.S. Cho, R.D. Delaune, Y.S. Ok, D.C. Seo, Lead sorption characteristics of various chicken bone part-derived chars, Environ. Geochem. Health, 41 (2019) 1675–1685.
  23. M.Y. Wang, Y. Liu, Y.M. Yao, L.J. Han, X. Liu, Comparative evaluation of bone chars derived from bovine parts: physicochemical properties and copper sorption behavior, Sci. Total Environ., 700 (2020) 134470, doi:10.1016/j. scitotenv.2019.134470.
  24. Y.X. Yang, C. Sun, B.C. Lin, Q.X. Huang, Surface modified and activated waste bone char for rapid and efficient VOCs adsorption, Chemosphere, 256 (2020) 127054, doi: 10.1016/j. chemosphere.2020.127054.
  25. N.A. Medellin-Castillo, S.A. Cruz-Briano, R. Leyva-Ramos, J.C. Moreno-Pirajan, A. Torres-Dosal,
    L. Giraldo-Gutierrez, G.J. Labrada-Delgado, R.O. Perez, J.P. Rodriguez-Estupinan, S.Y.R. Lopez, M.S.B. Mendoza, Use of bone char prepared from an invasive species, pleco fish (Pterygoplichthys spp.), to remove fluoride and cadmium(II) in water, J. Environ. Manage., 256 (2020) 109956, doi: 10.1016/j.jenvman.2019.109956.
  26. X.L. Sun, H.Y. Huang, D.L. Zhao, J. Lin, P.C. Gao, L.G. Yao, Adsorption of Pb2+ onto freeze-dried microalgae and environmental risk assessment, J. Environ. Manage., 265 (2020) 110472, doi:10.1016/j.jenvman.2020.110472.
  27. D.D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
  28. S.S. Majumdar, S.K. Das, R. Chakravarty, T. Saha, T.S. Bandyopadhyay, A.K. Guha, A study on lead adsorption by Mucor rouxii biomass, Desalination, 251 (2010) 96–102.
  29. B.H. Hameed, J.M. Salman, A.L. Ahmad, Adsorption isotherm and kinetic modeling of 2, 4-D pesticide on activated carbon derived from date stones, J. Hazard. Mater., 163 (2009) 121–126.
  30. S.K. Behera, J.H. Kim, X.J. Guo, H.S. Park, Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon, J. Hazard. Mater., 153 (2008) 1207–1214.
  31. A.E. Ofomaja, Kinetic study and sorption mechanism of methylene blue and methyl violet onto mansonia (Mansonia altissima) wood sawdust, Chem. Eng. J., 143 (2008) 85–95.
  32. L.Z. Song, C.Y. Dong, Z.J. Zhang, Q.Y. Zheng, Adsorption behavior of Cu(II) ion by the polyacrylic
    acid-polyvinylidene fluoride blending resin, China Environ. Sci., 28 (2007) 322–326.
  33. A. Esposito, F. Pagnanelli, A. Lodi, C. Solisio, F. Veglio, Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations, Hydrometallurgy, 60 (2001) 129–141.
  34. R. Balasubramanian, S.V. Perumal, K. Vijayaraghavan, Equilibrium isotherm studies for the multicomponent adsorption of lead, zinc, and cadmium onto Indonesian peat, Ind. Eng. Chem. Res., 48 (2009) 2093–2099.
  35. S.H. Abdel-Halim, A.M.A. Shehata, M.F. EI-Shahat, Removal of lead ions from industrial waste water by different types of natural materials, Water Res., 37 (2003) 1678–1683.
  36. S. Meski, S. Ziani, H. Khireddine, Removal of lead ions by hydroxyapatite prepared from the egg shell, J. Chem. Eng. Data, 55(2010) 3923–3928.
  37. F. Boudrahem, F. Aissani-Benissad, H. Aït-Amar, Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride, J. Environ. Manage., 90 (2009) 3031–3039.
  38. E. Deydier, R. Guilet, P. Sharrock, Beneficial use of meat and bone meal combustion residue: “an efficient low cost material to remove lead from aqueous effluent”, J. Hazard. Mater., 101 (2003) 55–64.
  39. P. Waranusantigul, P. Pokethitiyook, M. Kruatrachue, E.S. Upatham, Kinetics of basic dye (methylene blue) biosorption by giant duckweed (Spirodela polyrrhiza), Environ. Pollut., 125 (2003) 385–392.
  40. A.E. Ofomaja, Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust, Bioresour. Technol., 101 (2010) 5868–5876.
  41. S.N. Oba, J.O. Ighalo, C.O. Aniagor, C.A. Igwegbe, Removal of ibuprofen from aqueous media by adsorption: a comprehensive review, Sci. Total Environ., 780 (2021) 146608, doi: 10.1016/j. scitotenv.2021.146608.
  42. C.O. Aniagor, C.A. Igwegbe, J.O. Ighalo, S.N. Oba, Adsorption of doxycycline from aqueous media: a review, J. Mol. Liq., 334 (2021) 116124, doi: 10.1016/j.molliq.2021.116124.
  43. H.Y. Chen, X.J. Yang, Y.L. Liu, X.M. Lin, J.J. Wang, Z. Zhang, N. Li, Y.T. Li, Y.L. Zhang, KOH modification effectively enhances the Cd and Pb adsorption performance of N-enriched biochar derived from waste chicken feathers, Waste Manage., 130 (2021) 82–92.
  44. C. Xiong, C. Xue, L.Y. Huang, P. Hu, P. Fan, S.X. Wang, X.T. Zhou, Z.J. Yang, Y.Q. Wang, H.B. Ji, Enhanced selective removal of Pb(II) by modification low-cost bio-sorbent: experiment and theoretical calculations, J. Cleaner Prod., 316 (2021) 128372, doi: 10.1016/j.jclepro.2021.128372.
  45. R. Jayasree, P.S. Kumar, A. Saravanan, R.V. Hemavathy, P.R. Yaashikaa, P. Arthi, J. Shreshta, S. Jeevanantham, S. Karishma, M.V. Arasu, N.A. Al-Dhabi, K.C. Choi, Sequestration of toxic Pb(II) ions using ultrasonic modified agro waste: adsorption mechanism and modelling study, Chemosphere, 285 (2021) 131502, doi:10.1016/j.chemosphere.2021.131502.
  46. D.M. Wang, W.Y. Luo, J.Y. Zhu, T.F. Wang, Z.J. Gong, M.K. Fan, Potential of removing Pb, Cd, and Cu from aqueous solutions using a novel modified ginkgo leaves biochar by simply onestep pyrolysis, Biomass Convers. Biorefin., (2021), doi: 10.1007/s13399-021-01732-2.
  47. O.A.A. Eletta, F.O. Ayandele, J.O. Lghalo, Adsorption of Pb(II) and Fe(II) by mesoporous composite activated carbon from Tithonia diversifolia stalk and Theobroma cacao pod, Biomass Convers. Biorefin., (2021), doi:10.1007/s13399-021-01699-0.
  48. F.D. Meng, Y.W. Zhang, Y.B. Cai, G.D. Yuan, F.X. Han, Kinetic and thermodynamic features of Pb(II) removal from aqueous solution by leonardite-derived humic acid, Water Air Soil Pollut., 232 (2021) 255, doi:10.1007/s11270-021-05223-y.
  49. D.Z. Shi, H.H. Tong, M.Y. Lv, D. Luo, P. Wang, X.Y. Xu, Z.Y. Han, Optimization of hydrothermal synthesis of hydroxyapatite from chicken eggshell waste for effective adsorption of aqueous Pb(II), Environ. Sci. Pollut. Res., (2021), doi: 10.1007/ s11356-021-14772-y.
  50. Z.Z. Wang, J. Xu, D. Yellezuome, R.H. Liu, Effects of cotton straw-derived biochar under different pyrolysis conditions on Pb(II) adsorption properties in aqueous solutions, J. Anal. Appl. Pyrolysis, 157 (2021) 105214, doi: 10.1016/j.jaap.2021.105214.
  51. R. Panek, M. Medykowska, K. Szewczuk-Karpisz, M. Wisniewska, Comparison of physicochemical properties of fly ash precursor, Na-P1(C) zeolite–carbon composite and Na-P1 zeolite—adsorption affinity to divalent Pb and Zn cations, Materials, 14 (2021) 3018, doi: 10.3390/ma14113018.
  52. R. Panek, M. Medykowska, M. Wisniewska, K. Szewczuk-Karpisz, K. Jedruchniewicz, M. Franus, Simultaneous removal of Pb2+ and Zn2+ heavy metals using fly ash Na-X zeolite and its carbon Na-X(C) composite, Materials, 14 (2021) 2832, doi: 10.3390/ma14112832.
  53. L.S. Tan, Z.H. Ma, K.Q. Yang, Q.L. Cui, K. Wang, T.T. Wang, G.L. Wu, J.Y. Zheng, Effect of three artificial aging techniques on physicochemical properties and Pb adsorption capacities of different biochars, Sci. Total Environ., 699 (2020) 134223, doi: 10.1016/j.scitotenv.2019.134223.
  54. G. Li, J.L. Zhang, J. Liu, C.W. Sun, Z. Yan, Adsorption characteristics of white pottery clay towards Pb(II), Cu(II), and Cd(II), Arabian J. Geosci., 13 (2020) 130–139.
  55. G. Li, J.L. Zhang, J. Liu, S.F. Chen, H.H. Li, Investigation of the adsorption characteristics of Cr(VI) onto fly ash, pine nut shells, and modified bentonite, Desal. Water Treat., 195 (2020) 389–402.
  56. R.C. Xu, Y. Pang, Adsorption characteristics of rice husk biochar on low-concentration Pb(II) from water, Ind. Water Treat., 40 (2020) 35–38.
  57. J.W. Bi, R. Shan, J. Han, H.R. Yuan, Y.Y. Shi, X.Q. Zhang, Preparation of modified watermelon biochar and its adsorption properties for Pb(II), Environ. Sci., 41 (2020) 1770–1778.
  58. Z. L Chen, J.Q. Zhang, L. Huang, Z.H. Yuan, Z.J. Li, M.C. Liu, Removal of Cd and Pb with biochar made from dairy manure at low temperature, J. Integr. Agric., 18 (2019) 201–210.
  59. M. Naushad, Z.A. Alothman, M.R. Awual, M.M. Alam, G.E. Eldesoky, Adsorption kinetics, isotherms, and thermodynamic studies for the adsorption of Pb2+ and Hg2+ metal ions from aqueous medium using Ti(IV) iodovanadate cation exchanger, Ionics, 21 (2015) 2237–2245.
  60. Y.N. Chen, L.Y. Chai, Y.D. Shu, Study of arsenic(V) adsorption on bone char from aqueous solution, J. Hazard. Mater., 160 (2008) 168–172.
  61. A. Corami, S. Mignardi, V. Ferrini, Cadmium removal from single- and multi-metal (Cd+Pb+Zn+Cu) solutions by sorption on hydroxyapatite, J. Colloid Interface Sci., 317 (2008) 402–408.
  62. A.B. Nasr, K. Walha, C. Charcosset, R.B. Amar, Removal of fluoride ions using cuttlefish bones, J. Fluorine Chem., 132 (2011) 57–62.
  63. E. Valsami-Jones, K.V. Ragnarsdottir, A. Putnis, D. Bosbach, A.J. Kemp, G. Cressey, The dissolution of apatite in the presence of aqueous metal cations at pH 2–7, Chem. Geol., 151 (1998) 215–233.
  64. K.K.H. Choy, G. Mckay, Sorption of metal ions from aqueous solution using bone char, Environ. Int., 31 (2005) 845–854.
  65. E.R. Nightingale, Phenomenological theory of ion solvation effective radii of hydrated ions, J. Phys. Chem., 63 (1959) 1381–1387.
  66. M.G. Goff, F.M. Lambers, T.M. Nguyen, J. Sung, C.M. Rimnac, C.J. Hernandez, Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces, Bone, 79 (2015) 8–14.
  67. H.F. Wang, P.C. Luo, Preparation, kinetics, and adsorption mechanism study of microcrystalline cellulose-modified bone char as an efficient Pb(II) adsorbent, Water Air Soil Pollut., 231 (2020) 328, doi: 10.1007/s11270-020-04687-8.
  68. M.B. de Estrella, S.T. de Flores, N.A. Bonini, E. Gonzo, N.P. Pérez, A.N. Arias, Rapid synthesis of nanometric cellulose hydroxyapatite, Procedia Mater. Sci., 8 (2015) 608–616.