References

  1. C.M. Hussain, Handbook of Nanomaterials for Industrial Applications, Elsevier, 2018. Available at: https://doi.org/10.1016/C2016-0-04427-3
  2. L. Yu, M. Han, F. He, A review of treating oily wastewater, Arabian J. Chem., 10 (2017) S1913–S1922.
  3. C. Li-na, L. Yan-juan, H. Bin, Synthesis and application of PAZSC in oily wastewater treatment, Chem. Eng., 1 (2011) 5–9.
  4. E.K. Tetteh, S. Rathilal, Evaluation of different polymeric coagulants for the treatment of oil refinery wastewater, Cogent Eng., 7 (2020) 1–15.
  5. M.L. Hami, M.A. Al-Hashimi, M.M. Al-Doori, Effect of activated carbon on BOD and COD removal in a dissolved air flotation unit treating refinery wastewater, Desalination, 216 (2007) 116–122.
  6. G. Veréba, L. Nagya, S. Kertésza, I. Kovácsa, C. Hodúra, Z. László, Highly efficient purification of finely dispersed oil contaminated waters by coagulation/flocculation method and effects on membrane filtration, Studia UBB Chemia, 62 (2017) 259–270.
  7. F.Y. Al Jaberi, S.M. Jabbar, N.M. Jabbar, Modeling of adsorption isotherms of oil content through the electrocoagulation treatment of real oily wastewater, AIP Conf. Proc., 2213 (2020) 020041, doi:10.1063/5.0000157.
  8. F.Y. AlJaberi, S.A. Ahmed, H.F. Makki, Electrocoagulation treatment of high saline oily wastewater: evaluation and optimization, Heliyon, 6 (2020) e03988.
  9. Q. Cai, Z. Zhu, B. Chen, B. Zhang, Oil-in-water emulsion breaking marine bacteria for demulsifying oily wastewater, Water Res., 149 (2019) 292–301.
  10. L. Guo Hua, Y. Zheng Fang, T. Kun, Z. YiHe, Biotreatment of heavy oil wastewater by combined up flow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test, Biochem. Eng. J., 72 (2013) 48–53.
  11. E.O. Ezugbe, S. Rathilal, Membrane technologies in wastewater treatment: a review, Membranes, 10 (2020) 89, doi: 10.3390/ membranes10050089.
  12. S.M. Alardhi, F.Y. Al Jaberi, L.M. Al Saedi, Studying the treatability of different types of nanoparticles for oil content removal from oily wastewater produced from refinery process, Egypt. J. Chem., 63 (2020) 4963–4973.
  13. Y. Wang, Y. Zhou, L. Cai, J. Guo, Y. Xu, H. Zhang, L. Ji, W. Song, Facile preparation of charcoal nanomaterial from fishery waste with remarkable adsorption ability, Materials, 12 (2019) 1318, doi: 10.3390/ma12081318.
  14. M. Sulyman, M. Sienkiewicz, J. Haponiuk, S. Zalewski, New approach for adsorptive removal of oil in wastewater using textile fibers as alternative adsorbent, Acta Sci. Agric., 2 (2018) 1–6.
  15. S. Singhal, S. Agarwal, K. Bahukhandi, R. Sharma, N. Singhal, Bioadsorbent: a cost-effective method for effluent treatment, Int. J. Environ. Sci., 3 (2014) 151–156.
  16. S.M. Alardhi, T.M. Albayati, J.M. Alrubaye, A hybrid adsorption membrane process for removal of dye from synthetic and actual wastewater, Chem. Eng. Process., 6 (2020) 108–113.
  17. E. Asma, B. Fawzi, Removal of oil from water by calcium alginate hydrogel modified with maleic anhydride,
    J. Polym. Environ., 26 (2018) 2901–2916.
  18. M.A. Frezzini, A. Giuliano, J. Treacy, S. Canepari, L. Massimi, Food waste materials appear efficient and low-cost adsorbents for the removal of organic and inorganic pollutants from wastewater, Res. Dev. Mater. Sci., 5 (2018) 298–309.
  19. S.M. Alardhi, J.M. Alrubaye, T.M. Albayati, Adsorption of Methyl Green dye onto MCM-41: equilibrium, kinetics and thermodynamic studies, Desal. Water Treat., 179 (2020) 323–331.
  20. M. Kazemi, F. Khodaiyan, S.S. Hosseini, Utilization of food processing wastes of eggplant as a high potential pectin source and characterization of extracted pectin, Food Chem., 294 (2019) 339–346.
  21. M. Kazemi, F. Khodaiyan, S.S. Hosseini, Eggplant peel as a high potential source of high methylated pectin: ultrasonic extraction optimization and characterization, LWT, 105 (2019) 182–189.
  22. J.J. Rochín-Medina, J.A. Sotelo-Castroa, N.Y. Salazar-Salasc, J.A. López-Valenzuelac, K. Ramírez, Antioxidant and anti-Salmonella activities of eggplant peel compounds obtained by solvent-free calcium-based extraction, CyTA-J. Food, 17 (2019) 873–881.
  23. T.H. Ibrahim, Z.B. Babar, M.I. Khamis, Removal of lead(II) Ions from aqueous solution using eggplant peels activated charcoal, Sep. Sci. Technol., 50 (2015) 91–98.
  24. A.S. Gulistan, T.H. Ibrahim, M.I. Khamis, Y. ElSayed, Application of eggplant peels powder for the removal of oil from produced water, Desal. Water Treat., 57 (2016) 15724–15732.
  25. A. Yin, F. Xu, X. Zhang, Fabrication of biomass-derived carbon aerogels with high adsorption of oils and organic solvents: effect of hydrothermal and post-pyrolysis processes, Materials, 9 (2016) 758, doi:10.3390/ma9090758.
  26. H. Ahmadi, M. Javanbakht, B. Akbari-Adergani, M. Shabanian, β-cyclodextrin based hydrophilic thin layer molecularly imprinted membrane with di(2-ethylhexyl) phthalate selective removal ability, J. Ind. Eng. Chem., 89 (2020) 416–427.
  27. T.M. Albayati, A.A. Sabri, D.B. Abed, Adsorption of binary and multi heavy metals ions from aqueous solution by amine functionalized SBA-15 mesoporous adsorbent in a batch system, Desal. Water Treat., 151 (2019) 315–321.
  28. M. Mohammadi, M. Sedighi, M. Hemati, Removal of petroleum asphaltenes by improved activity of NiO nanoparticles supported on green AlPO-5 zeolite: process optimization and adsorption isotherm, Petroleum, 6 (2020) 182–188.
  29. K.R. Kalash, T.M. Albayati, Remediation of oil refinery wastewater implementing functionalized mesoporous materials MCM-41 in batch and continuous adsorption process, Desal. Water Treat., 220 (2021) 130–141.
  30. S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay, Chin. J. Chem. Eng., 36 (2020) 19–28.
  31. T.M. Albayati, A.M. Doyle, Shape-selective adsorption of substituted aniline pollutants from wastewater, Adsorpt. Sci. Technol., 31 (2013) 459–468.
  32. T.M. Albayati, I.K. Salih, H.F. Alazzawi, Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system, Heliyon, 5 (2019) e02539.
  33. T.M. Albayati, A.A. Sabri, D.B. Abed, Functionalized SBA-15 by amine group for removal of Ni(II) heavy metal ion in the batch adsorption system, Desal. Water Treat., 174 (2020) 301–310.
  34. A.D. Salman, T. Juzsakova, R. Ákos, R.I. Ibrahim, M.A. Al- Mayyahi, S. Mohsen, T.A. Abdullah, E. Domokos, Synthesis and surface modification of magnetic Fe3O4@SiO2 core-shell nanoparticles and its application in uptake of scandium(III) ions from aqueous media, Environ. Sci. Pollut. Res., 28 (2021) 28428–28443.
  35. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11.
  36. T.M. Albayati, A.A.A. Jassam, Synthesis and characterization of mesoporous materials as a carrier and release of prednisolone in drug delivery system, J. Drug Delivery Sci. Technol., 53 (2019) 101176, doi:10.1016/j.jddst.2019.101176.
  37. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–60.
  38. W. Zhu, J. Liu, M. Li, Fundamental studies of novel zwitterionic hybrid membranes: kinetic model and mechanism insights into strontium removal, The Sci. World J., 2014 (2014) 1–7, doi: 10.1155/2014/485820.
  39. D. Reichenberg, Properties of ion-exchange resins in relation to their structure, III: kinetics of exchange, J. Am. Chem. Soc., 75 (1953) 589–597.
  40. Z. Huang, T. Wang, H. Yi, X. Li, Study on the adsorption of methylene blue from dye wastewater by Humulus Japonicus leaves, E3S Web Conf., 236 (2021) 03028, doi: 10.1051/e3sconf/202123603028.
  41. B. Belhamdi, Z. Merzougui, M. Trari, A. Addoun, A kinetic, equilibrium and thermodynamic study of
    L-phenylalanine adsorption using activated carbon based on agricultural waste (date stones), J. Appl. Res. Technol., 14 (2016) 354–366.
  42. A. Bouguettoucha, A. Reffas, D. Chebli, T. Mekhalif, A. Amrane, Novel activated carbon prepared from an agricultural waste, Stipa tenacissima, based on ZnCl2 activation—characterization and application to the removal of methylene blue, Desal. Water Treat., 57 (2016) 24056–24069.
  43. M.H.K. Darvanjooghi, S.M. Davoodi, A.Y. Dursun, M.R. Ehsani, I. Karimpour, E. Ameri, Application of treated eggplant peel as a low-cost adsorbent for water treatment toward elimination of Pb2+: kinetic modeling and isotherm study, Adsorpt. Sci. Technol., 36 (2018) 1112–1143.
  44. S.M. Davoodi, M. Sadeghi, M. Naghsha, A. Moheb, Olefin– paraffin separation performance of polyimide Matrimid®/silica nanocomposite membranes, RSC Adv., 6 (2016) 23746–23759.
  45. M.H.K. Darvanjooghi, M. Nasr Esfahany, Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid, Int. Commun. Heat Mass Transfer, 77 (2016) 148–154.
  46. V.K. Gupta, S. Agarwal, T.A. Saleh, Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal, J. Hazard. Mater., 185 (2011) 17–23.
  47. S. Larous, A.-H. Meniai, The use of sawdust as by product adsorbent of organic pollutant from wastewater: adsorption of phenol, Energy Procedia, 18 (2012) 905–914.
  48. M. Sulyman, J. Namiesnik, A. Gierak, Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review, Pol. J. Environ. Stud., 26 (2017) 479–510.
  49. J. Li, M. Luo, C. Zhao, C. Li, W. Wang, Y. Zu, Y. Fu, Oil removal from water with yellow horn shell residues treated by ionic liquid, Bioresour. Technol., 128 (2013) 673–678.
  50. J. Febrianto, A.N. Kosasih, J. Sunarso, Y. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater., 162 (2009) 616–645.
  51. O. Hamdaoui, Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick, J. Hazard. Mater., 135 (2006) 264–273.
  52. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J, 156 (2010) 2–10.
  53. R.E. Treybal, Mass Transfer Operations, McGraw-Hill, New York, 1980.
  54. E. Worch, Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling, Walter de Gruyter, GmbH & Co. KG, Berlin, Germany, 2012, 345 p.
    Available at: https://doi.org/10.1515/9783110240238
  55. R.C. Bansal, M. Goyal, Activated Carbon Adsorption, 1st ed., CRC Press, 2005. Available at: https://doi.org/10.1201/ 9781420028812
  56. H.N. Tran, S. You, A.H. Bandegharaei, H. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  57. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  58. U.J. Etim, S.A. Umoren, U.M. Eduok, Coconut coir dust as a low cost adsorbent for the removal of cationic dye from aqueous solution, J. Saudi Chem. Soc., 20 (2016) S67–S76.