References

  1. S. Yadav, H. Saleem, I. Ibrar, O. Naji, A.A. Hawari, A.A. Alanezi, S.J. Zaidi, A. Altaee, J. Zhou, Recent developments in forward osmosis membranes using carbon-based nanomaterials, Desalination, 482 (2020) 114375, doi:10.1016/j.desal.2020.114375.
  2. N.U. Barambu, M.R. Bilad, M.A. Bustam, K.A. Kurnia, M.H.D. Othman, N.A.H.M. Nordin, Development of membrane material for oily wastewater treatment: a review, Ain. Shams. Eng. J., 12 (2021) 1361–1374.
  3. J. Mittal, Permissible synthetic food dyes in India, Resonance – J. Sci. Educ., 25 (2020) 567–577.
  4. A. Mittal, R. Ahmad, I. Hasan, Iron oxide-impregnated dextrin nanocomposite: synthesis and its application for the biosorption of Cr(VI) ions from aqueous solution, Desal. Water Treat., 57 (2015) 15133–15145.
  5. P. Saharan, V. Kumar, J. Mittal, V. Sharma, A.K. Sharma, Efficient ultrasonic assisted adsorption of organic pollutants employing bimetallic-carbon nanocomposites, Sep. Sci. Technol., 56 (2021) 2895–2908.
  6. P. Bernardo, E. Drioli, Membrane gas separation progresses for process intensification strategy in the petrochemical industry, Petrol. Chem., 50 (2010) 271–282.
  7. E. Drioli, A.I. Stankiewicz, F. Macedonio, Membrane engineering in process intensification - an overview,
    J. Membr. Sci., 380 (2011) 1–8, doi: 10.1016/j.memsci.2011.06.043.
  8. N.F. Himma, N. Prasetya, S. Anisah, I.G. Wenten, Superhydrophobic membrane: progress in preparation and its separation properties, Rev. Chem. Eng., 35 (2019) 211–238.
  9. N.F. Himma, A.K. Wardani, N. Prasetya, P.T.P. Aryanti, I.G. Wenten, Recent progress and challenges in membranebased O2/N2 separation, Rev. Chem. Eng., (2018), doi: 10.1515/revce-2017-0094.
  10. I.G.B.N. Makertiharta, P.T. Dharmawijaya, I.G. Wenten, Current progress on zeolite membrane reactor for CO2 hydrogenation, AIP Conf. Proc., 1788 (2018) 040001, doi: 10.1063/1.4968389.
  11. S. Abd Jalil, D.K. Wang, C. Yacou, J. Motuzas, S. Smart, J.C. Diniz da Costa, Vacuum-assisted tailoring of pore structures of phenolic resin derived carbon membranes, J. Membr. Sci., 525 (2018) 240–248.
  12. S. Alami-Younssi, A. Larbot, M. Persin, J. Sarrazin, L. Cot, Rejection of mineral salts on a gamma alumina nanofiltration membrane: application to environmental process, J. Membr. Sci., 102 (1995) 123–129.
  13. B.V. Der Bruggen, M. Mänttäri, M. Nyström, Drawbacks of applying nanofiltration and how to avoid them: a review, Sep. Purif. Technol., 63 (2008) 251–263.
  14. T.V. Gestel, C. Vandecasteelea, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B.V. Der Bruggen, G. Maes, Salt retention in nanofiltration with multilayer ceramic TiO2 membranes, J. Membr. Sci., 209 (2002) 379–389.
  15. J.M. Gohil, R.R. Choudhury, Chapter 2 – Introduction to Nanostructured and Nano-Enhanced Polymeric Membranes: Preparation, Function, and Application for Water Purification, In: Nanoscale Materials in Water Purification, Nano and Micro Technologies, 2019, pp. 25–57.
    Available at: https://doi. org/10.1016/B978-0-12-813926-4.00038-0
  16. N. Hilal, H. Al-Zoubi, A.W. Mohammad, N.A. Darwish, Nanofiltration of highly concentrated salt solutions up to seawater salinity, Desalination, 184 (2005) 315–326.
  17. Y. Du, Y. Lv, W.-Z. Qiu, J. Wu, Z.-K. Xu, Nanofiltration membranes with narrowed pore size distribution via pore wall modification, Chem. Commun., 52 (2016) 8589–8592.
  18. M. Park, J. Park, E. Lee, J. Khim, J. Cho, Application of nanofiltration pretreatment to remove divalent ions for economical seawater reverse osmosis desalination, Desal. Water Treat., 57 (2016) 20661–20670.
  19. A.H. Hassani, R. Mirzayee, S. Nasseri, M. Borghei, M. Gholami, B. Torabifar, Nanofiltration process on dye removal from simulated textile wastewater, Int. J. Environ. Sci. Technol., 5 (2008) 401–408.
  20. E. Ellouze, N. Tahri, R. Ben Amar, Enhancement of textile wastewater treatment process using nanofiltration, Desalination, 286 (2012) 16–23.
  21. A.Y. Zahrim, C. Tizaoui, N. Hilal, Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: a review, Desalination, 266 (2011) 1–16.
  22. L. Shao, X.Q. Cheng, Y. Liu, S. Quan, J. Ma, S.Z. Zhao, K.Y. Wang, Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for safranin O and aniline blue removal, J. Membr. Sci., 430 (2013) 96–105.
  23. A. Anand, A. Unnikrishnan, J.Y. Mao, H.J. Lina, C.C. Huang, Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling–a review, Desalination, 429 (2018) 119–133.
  24. A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation, J. Membr. Sci., 193 (2001) 1–18.
  25. M.M. Lorente-Ayza, S. Mestre, V. Sanz, E. Sanchez, On the underestimated effect of the starch ash on the characteristics of low-cost ceramic membranes, Ceram. Int., 42 (2016) 18944–18954.
  26. M. Lorente-Ayza, E. Sánchez, V. Sanz, S. Mestre, Influence of starch content on the properties of low-cost microfiltration ceramic membranes, Ceram. Int., 41 (2015) 13064–13073.
  27. H. Kaur, V.K. Bulasara, R.K. Gupta, Effect of carbonates composition on the permeation characteristics
    of low-cost ceramic membrane supports, J. Ind. Eng. Chem., 44 (2016) 185–194.
  28. I. Hedfi, N. Hamdi, M.A. Rodriguez, E. Srasra, Development of a low cost microporous ceramic membrane from kaolin and alumina, using the lignite as porogen agent, Ceram. Int., 42 (2016) 5089–5093.
  29. J. Yin, B. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479 (2015) 256–275.
  30. M.O. Daramola, O.O. Sadare, O.O. Oluwasina, S.E. Iyuke, Synthesis and application of functionalized carbon nanotube infused polymer membrane (fCNT/PSF/PVA) for treatment of phenol-containing wastewater,
    J. Membr. Sci. Res., 5 (2019) 310–316.
  31. M.O. Daramola, B. Silinda, S. Masondo, O.O. Oluwasina, Polyether sulfone-sodalite (PES-SOD) mixed matrix membranes: prospect for acid mine drainage (AMD) treatment, J. S. Afr. I. Min. Metall., 115 (2015) 1221–1228.
  32. C.F. Unuigbe, O.M. Fayemiwo, M.O. Daramola, Performance evaluation of iron nanoparticles infused polyethersulphone (Fe-NPs/PES) membrane during treatment of BTEXcontaminated wastewater, Water Environ. J., 34 (2019) 74–86, doi: 10.1111/wej.12506.
  33. G. Baumgarten, D. Jakobs, H. Muller, Treatment of AOXcontaining waste- water partial flows from pharmaceutical production processes with nanofiltration and reverse osmosis, Chem. Eng. Technol., 76 (2004) 321–325.
  34. A.R. Anim-Mensah, W.B. Krantz, R. Govind, Studies on polymeric nanofiltration-based water softening and the effect of anion properties on the softening process, Eur. Polym. J., 44 (2008) 2244–2252.
  35. S. Ghizellaoui, A. Chibani, S. Ghizellaoui, Use of nanofiltration for partial softening of very hard water, Desalination, 179 (2005) 315–322.
  36. C. Li, C. Song, P. Tao, M. Sun, Z. Pan, T. Wang, M. Shao, Enhanced separation performance of coal-based carbon membranes coupled with an electric field for oily wastewater treatment, Sep. Purif. Technol., 168 (2016) 47–56.
  37. N. Tahri, I. Jedidi, S. Cerneaux, M. Cretin, R. Ben Amar, Development of an asymmetric carbon microfiltration membrane: application to the treatment of industrial textile wastewater, Sep. Purif. Technol., 118 (2013) 179–187.
  38. N. Tahri, I. Jedidi, S. Ayadi, S. Cerneaux, M. Cretin, R. Ben Amar, Preparation of an asymmetric microporous carbon membrane for ultrafiltration separation: application to the treatment of industrial dyeing effluent, Desal. Water Treat., 57 (2016) 23473–23488, doi: 10.1080/19443994.2015.1135826.
  39. C. Song, T. Wang, Y. Pan, J. Qiu, Preparation of coal based microfiltration carbon membrane and application in oily wastewater treatment, Sep. Purif. Technol., 51 (2006) 80–84.
  40. C. Song, T. Wang, J. Qiu, Y. Cao, T. Cai, Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes, J. Porous Mater., 15 (2008) 1–6.
  41. Z. Chen, F. Chen, F. Zeng, J. Li, Preparation and characterization of the charged PDMC/Al2O3 composite nanofiltration membrane, Desalination, 349 (2014) 106–114.
  42. C.M. Wu, T.W. Xu, W.H. Yang, Fundamental studies of a new hybrid (inorganic–organic) positively charged membrane: membrane preparation and characterizations, J. Membr. Sci., 216 (2003) 269–278.
  43. J. Xiao, C. Xiong, L. Ding, H. Yuan, L. Chen, W. Liu, Tubular solid oxide fuel cells fabricated by slip-phase inversion combined with a vacuum-assisted coating technique, Ceram. Int., 40 (2014) 10163–10169.
  44. T.A. Centeno, J.L. Vilas, A.B. Fuertes, Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation, J. Membr. Sci., 228 (2004) 45–54.
  45. M. Teixeira, M. Campo, D.A. Tanaka, M.A. Tanco, C. Magen, A. Mendes, Carbon Al2O3 Ag composite molecular sieve membranes for gas separation, Chem. Eng. Res. Des., 90 (2012) 2338–2345.
  46. M. Teixeira, M.C. Campo, D.A. Tanaka, M.A. Tanco, C. Magen, A. Mendes, Composite phenolic resin-based carbon molecular sieve membranes for gas separation, Carbon, 49 (2011) 4348–4358.
  47. X.L. Pan, N. Stroh, H. Brunner, G.X. Xiong, S.S. Sheng, Deposition of sol–gel derived membranes on Al2O3 hollow fibers by a vacuum-assisted dip-coating process, J. Membr. Sci., 226 (2003) 111–118.
  48. A.B. Fuertes, T.A. Centeno, Preparation of supported asymmetric carbon molecular sieve membranes,
    J. Membr. Sci., 144 (1998) 105–111.
  49. L. Li, C. Song, H. Jiang, J. Qiu, T. Wang, Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer, J. Membr. Sci., 450 (2014) 469–477.
  50. M.A. Anderson, M.J. Gieselmann, Q.Y. Xu, Titania and alumina ceramic membranes, J. Membr. Sci., 39 (1988) 243–258.
  51. M. Mahdyarfar, T. Mohammadi, A. Mohajeri, Gas separation performance of carbon materials produced from phenolic resin: effects of carbonization temperature and ozone post treatment, New Carbon Mater., 28 (2013) 39–46.
  52. H. Kita, H. Maeda, K. Tanaka, K. Okamoto, Carbon molecular sieve membrane prepared from phenolic resin, Chem. Lett., 26 (1997) 179–180.
  53. T.A. Centeno, A.B. Fuertes, Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes, Sep. Purif. Technol., 25 (2001) 379–384.
  54. K. Briceno, D. Montané, R. Garcia-Valls, A. Iulianelli, A. Basile, Fabrication variables affecting the structure and properties of supported carbon molecular sieve membranes for hydrogen separation, J. Membr. Sci., 415–416 (2012) 288–297.
  55. M.A. Llosa-Tanco, D.A. Pacheco Tanaka, A Mendes, Compositealumina- carbon molecular sieve membranes prepared from novolac resin and boehmite, Part II: Effect of the carbonization temperature on the gas permeation properties, Int. J. Hydrogen Energy, 40 (2014) 3485–3496.
  56. S.C. Rodrigues, R. Whitley, A. Mendes, Preparation and characterization of carbon molecular sieve membranes based on resorcinol–formaldehyde resin, J. Membr. Sci., 459 (2014) 207–216.
  57. A. Margot. L. Tanco, D.A. Pacheco Tanaka, Ad_elio Mendes, Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part II: Effect of the carbonization temperature on the gas permeation properties, Int. J. Hydrogen Energy, 40 (2015) 3485–3496.
  58. N.H. Ismail, W.N.W. Salleh, N. Sazali, A.F. Ismail, N. Yusof, F. Aziz, Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere, Sep. Purif. Technol., 195 (2018) 295–304.
  59. T.A. Centeno, A.B. Fuertes, supported carbon molecular sieve membranes based on a phenolic resin,
    J. Membr. Sci.,160 (1999) 201–211.
  60. S. Otani, A. Oya, In: R.W. Cahn, P. Haasen, E.J. Kramer, Eds., Materials Science and Technology:
    A Comprehensive Treatment, Vol. 9, VCH, Weinheim, 1991, p. 559.
  61. K. Miura, J. Hayashi, K. Hashimoto, Production of molecular sieving carbon through carbonization of coal modified by organic additives, Carbon, 29 (1991) 653–660.
  62. T.H. Ko, W.S. Kuo, Y.H. Chang, Raman study of the microstructure changes of phenolic resin during pyrolysis, Polym. Compos., 21 (2000) 745–750.
  63. C. Allègre, P. Moulin, M. Maisseu, F. Charbit, Treatment and reuse of reactive dyeing effluents, J. Membr. Sci., 269 (2006) 15–34.
  64. B. Van der Bruggen, B. Daems, D. Wilms, C. Vandecasteele, Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry, Sep. Purif. Technol., 22 (2001) 519–528.
  65. B. Van der Bruggen, G. Cornelis, C. Vandecasteele, I. Devreese, fouling of nanofiltration and ultrafiltration membranes applied for wastewater regeneration in the textile industry, Desalination, 175 (2005) 111–119.
  66. Q. Chen, Y. Yang, M. Zhou, M. Liu, S. Yu, C. Gao, Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration, J. Hazard. Mater., 284 (2015) 121–129.
  67. N. Tahri, G. Masmoudi, E. Ellouze, A. Jrad, P. Drogui, R. Ben Amar, coupling microfiltration and nanofiltration processes for the treatment at source of dyeing-containing effluent, J. Cleaner Prod., 33 (2012) 226–235.