References

  1. T. Lotti, R. Kleerebezem, C. Lubello, M.C.M. van Loosdrecht, Physiological and kinetic characterization of a suspended cell anammox culture, Water Res., 60 (2014) 1–14.
  2. M. Strous, J.J. Heijnen, J.G. Kuenen, M.S.M. Jetten, The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Appl. Microbiol. Biotechnol., 50 (1998) 589–596.
  3. I. Zekker, M. Raudkivi, O. Artemchuk, E. Rikmann, H. Priks, M. Jaagura, T. Tenno, Mainstream-sidestream wastewater switching promotes anammox nitrogen removal rate in organic-rich, low-temperature streams, Environ. Technol., 42 (2021) 3073–3082.
  4. I. Zekker, G.D. Bhowmick, H. Priks, D. Nath, E. Rikmann, M. Jaagura, T. Tenno, K. Tamm, M.M. Ghangrekar, ANAMMOX-denitrification biomass in microbial fuel cell to enhance the electricity generation and nitrogen removal efficiency, Biodegradation, 31 (2020) 249–264.
  5. Z.Z. Wang, Y. Ji, L. Yan, Y. Yong, H. Zhang, P. Gao, S.M. Li, Simultaneous anammox and denitrification process shifted from the anammox process in response to C/N ratios: performance, sludge granulation, and microbial community, J. Biosci. Bioeng., 130 (2020) 319–326.
  6. Z.Z. Wang, P. Gao, L. Yan, D. Zhao, Y. Ji, H. Zhang, S.M. Li, Simultaneous nitritation, anammox, and denitrification (SNAD) process in a membrane bioreactor: start-up, optimization, and membrane fouling behavior, Desal. Water Treat., 194 (2020) 69–84.
  7. M. Takekawa, G. Park, S. Soda, M. Ike, Simultaneous anammox and denitrification (SAD) process in sequencing batch reactors, Bioresour. Technol., 174 (2014) 159–166.
  8. S.X. Sheng, B. Liu, X.Y. Hou, Z. Liang, X.B. Sun, L.F. Du, D.P. Wang, Effects of different carbon sources and C/N ratios on the simultaneous anammox and denitrification process, Int. Biodeterior. Biodegrad., 127 (2018) 26–34.
  9. F. Gao, J. Nan, S.N. Li, Y.R. Wang, Modeling and simulation of a biological process for treating different COD:N ratio wastewater using an extended ASM1 model, Chem. Eng. J., 332 (2018) 671–681.
  10. B.A.B. Zhen, T.B. Masashi, P.B. Giri, S.B. Satoshi, Z.A. Jiti, Q.A. Sen, I.B. Michihiko, Effects of the C/N ratio and bacterial populations on nitrogen removal in the simultaneous anammox and heterotrophic denitrification process: mathematic modeling and batch experiments, Chem. Eng. J., 280 (2015) 606–613.
  11. J.Y. Yang, J. Li, Z.M. Zheng, J. Du, J. Ma, W. Bian, W.X. Wang, Effect of organic compounds on the SAD and its mathematical simulation, J. Environ. Sci. (China), 38 (2018) 4516–4523.
  12. M. Azari, M. Lübken, M. Denecke, Simulation of simultaneous anammox and denitrification for kinetic and physiological characterization of microbial community in a granular biofilm system, Biochem. Eng. J., 9 (2017) 206–216.
  13. APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC, USA, 2005.
  14. L. Gong, M. Huo, Q. Yang, J. Li, B. Ma, R. Zhu, S. Wang, Y. Peng, Performance of heterotrophic partial denitrification under feast-famine condition of electron donor: a case study using acetate as external carbon source, Bioresour. Technol., 133 (2013) 263–269.
  15. S. Milia, M. Perra, G. Tocco, A. Carucci, The start-up of an anammox reactor as the second step for the treatment of ammonium rich refinery (IGCC) wastewater with high C org/N ratio, Ecol. Eng., 106 (2017) 358–368.
  16. M. Kumar, J.-G. Lin, Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal — strategies and issues, J. Hazard. Mater., 178 (2010) 1–9.
  17. U. Wiesmann, Biological nitrogen removal from wastewater, Adv. Biochem. Eng./Biotechnol., 51 (1994) 113–154.
  18. J. Meng, J.L. Li, J.Z. Li, Z.B. Min, The effects of influent and operational conditions on nitrogen removal in an upflow microaerobic sludge blanket system: a model-based evaluation, Bioresour. Technol., 295 (2020) 122225, doi: 10.1016/j. biortech.2019.122225.
  19. B.J. Ni, A. Joss, Z. Yuan, Modeling nitrogen removal with partial nitritation and anammox in one floc-based sequencing batch reactor, Water Res., 67 (2014) 321–329.
  20. M. Strous, J.J. Heijnen, J.G. Kuenen, M.S.M. Jetten, The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Appl. Microbiol. Biotechnol., 50 (1998) 589–596.
  21. X.D. Hao, J.J. Heijnen, M.C.M. van Loosdrecht, Sensitivity analysis of a biofilm model describing a one-phase completely autotrophic nitrogen removal (CANON) process, Biotechnol. Bioeng., 77 (2010) 266–277.
  22. W. Gujer, M. Henze, T. Mino, M.V. Loosdrecht, Activated sludge model No. 3, Water Sci. Technol., 39 (1999) 183–193.
  23. D. Kaelin, R. Manser, L. Rieger, J. Eugster, K. Rottermann, H. Siegrist, Extension of ASM3 for two-step nitrification and denitrification and its calibration and validation with batch tests and pilot scale data, Water Res., 43 (2009) 1680–1692.
  24. J. Meng, J.L. Li, J.Z. Li, J. Nan, M. Zheng, The effects of influent and operational conditions on nitrogen removal in an upflow microaerobic sludge blanket system: a model-based evaluation, Bioresour. Technol., 295 (2020) 122225, doi: 10.1016/j.biortech.2019.122225.