References
  -  S. Shaikh, K. Thomas, S. Zuhair, An exploratory study of
    e-waste creation and disposal: upstream considerations,
    Resour. Conserv. Recycl., 155 (2020) 104662, doi: 10.1016/j.
    resconrec.2019.104662. 
 
  -  X. Zeng, R. Gong, W.-Q. Chen, J. Li, Uncovering the recycling
    potential of ‘New’ WEEE in China, Environ. Sci. Technol.,
    50 (2016) 1347–1358. 
 
  -  B. Boubellouta, S. Kusch-Brandt, Relationship between
    economic growth and mismanaged e-waste: panel data
    evidence from 27 EU countries analyzed under the Kuznets
    curve hypothesis, Waste Manage., 120 (2021) 85–97. 
 
  -  K. Abeliotis, K. Boikou, C. Chroni, K. Kalafata,
    H. Angelakopoulos, K. Lasaridi, WEEE preparing for reuse in
    Greece: potential and initiatives, Waste Biomass Valorization,
    12 (2021) 2959–2968. 
 
  -  P. Tanskanen, Management and recycling of electronic waste,
    Acta Mater., 61 (2013) 1001–1011. 
 
  -  H. Ismail, M.M. Hanafiah, A review of sustainable e-waste
    generation and management: present and future perspectives,
    J. Environ. Manage., 264 (2020) 110495, doi: 10.1016/j.
    jenvman.2020.110495. 
 
  -  A. Akcil, I. Agcasulu, B. Swain, Valorization of waste LCD
    and recovery of critical raw material for circular economy:
    a review, Resour. Conserv. Recycl., 149 (2019) 622–637. 
 
  -  S. Zhang, Y. Gu, A. Tang, B. Li, B. Li, D. Pan, Y. Wu, Forecast
    of future yield for printed circuit board resin waste generated
    from major household electrical and electronic equipment
    in China, J. Cleaner Prod., 283 (2021) 124575, doi: 10.1016/j.
    jclepro.2020.124575. 
 
  -  R. Hischier, H.W. Boni, Combining environmental and
    economic factors to evaluate the reuse of electrical and
    electronic equipment – a Swiss case study, Resour. Conserv.
    Recycl., 166 (2021) 105307, doi:10.1016/j.resconrec.2020.
    105307. 
 
  -  L. Rocchetti, F. Vegliò, B. Kopacek, F. Beolchini, Environmental
    impact assessment of hydrometallurgical processes for metal
    recovery from WEEE residues using a portable prototype plant,
    Environ. Sci. Technol., 
    47 (2013) 1581–1588.  
  -  Z. Sun, H. Cao, Y. Xiao, J. Sietsma, W. Jin, H. Agterhuis,
    Y. Yang, Toward sustainability for recovery of critical metals
    from electronic waste: the hydrochemistry processes, ACS
    Sustainable Chem. Eng., 5 (2017) 21–40. 
 
  -  C. Hagelüken, C.W. Corti, Recycling of gold from electronics:
    cost-effective use through ‘Design for Recycling’, Gold Bull.,
    43 (2010) 209–220. 
 
  -  J. Liu, Z. Deng, H. Yu, L. Wang, Ferrocene-based metalorganic
    framework for highly efficient recovery of gold from
    WEEE, Chem. Eng. Technol., 410 (2021) 128360, doi: 10.1016/j.cej.2020.128360. 
 
  -  M.P. Cenci, F.C. Dal Berto, B.W. Castillo, H.M. Veit, Precious
    and critical metals from wasted LED lamps: characterization
    and evaluation, Environ. Technol., 10 (2020) 1–12. 
 
  -  R.G. Charles, P. Douglas, M. Dowling, G. Liversage,
    L.M. Davies, Towards increased recovery of critical raw
    materials from WEEE – evaluation of CRMs at a component
    level and pre-processing methods for interface optimisation
    with recovery processes, Resour. Conserv. Recycl., 161 (2020)
    104923, doi:10.1016/j.resconrec.2020.104923. 
 
  -  M. Kaya, Recovery of metals and nonmetals from electronic
    waste by physical and chemical recycling processes, Waste
    Manage., 57 (2016) 64–90. 
 
  -  Directive 2012/19/EU of the European Parliament and of
    the Council of 4 July 2012 on Waste Electrical and Electronic
    Equipment, WEEE, Official Journal of the European Union L,
    197, 38–71. 
 
  -  O.S. Shittu, I.D. Williams, P.J. Shaw, Global E-waste
    management: can WEEE make a difference? a review of e-waste
    trends, legislation, contemporary issues and future challenges,
    Waste Manage., 120 (2021) 549–563. 
 
  -  D. Ibanescu, D. Cailean Gavrilescu, C. Teodosiu, S. Fiore,
    Assessment of the waste electrical and electronic equipment
    management systems profile and sustainability in developed
    and developing European Union countries, Waste Manage.,
    73 (2017) 39–53. 
 
  -  M.D. Rao, K.K. Singh, C.A. Morrison, J.B. Love, Challenges and
    opportunities in the recovery of gold from electronic waste,
    RSC Adv., 10 (2020) 4300–4309. 
 
  -  M. Sethurajan, E.D. van Hullebusch, D. Fontana, A. Akcil,
    H. Deveci, B. Batinic, J.P. Leal, T.A. Gasche, M.A. Kucuker,
    K. Kuchta, I.F.F. Neto, H.M.V.M. Soares, A. Chmielarz, Recent
    advances on hydrometallurgical recovery of critical and
    precious elements from end of life electronic wastes - a review,
    Crit. Rev. Env. Sci. Technol., 49 (2019) 212–275. 
 
  -  M. Assadian, M.H. Idris, S. Morteza, G. Shahri, B. Gholampour,
    Gold recovery from WEEE by chlorine system, Appl. Mech.
    Mater., 330 (2013) 123–125. 
 
  -  V.S. Kislik, Modern and Future Trends in Fundamentals of
    Solvent Extraction, Solvent Extraction: Classical and Novel
    Approaches, Amsterdam, 2012, pp. 439–450. 
 
  -  R.A. Milescu, M.L. Segatto, A. Stahl, C.R. McElroy, T.J. Farmer,
    J.H. Clark, V.G. Zuin, Sustainable single-stage solid–liquid
    extraction of hesperidin and rutin from agro-products using
    cyrene, ACS Sustainable Chem. Eng., 8 (2020) 18245–18257. 
 
  -  D. Kealey, P.J. Haines, Chemia Analityczna, Krótkie wykłady,
    Warszawa, 2019, pp. 120–121. 
 
  -  B. Pośpiech, Studies on extraction and permeation of
    cadmium(II) using Cyphos IL-104 as selective extractant and
    ion carrier, Hydrometallurgy, 154 (2015) 88–94. 
 
  -  C.-V. Gherasim, M. Cristea, C.-V. Grigoras, G. Bourceanu, New
    polymer inclusion membrane. Preparation and characterization,
    Dig. J. Nanomater. Biostruct., 6 (2011) 1507–1516. 
 
  -  Y.Y.N. Bonggotgetsakul, M. Ashokkumar, R.W. Cattrall,
    S.D. Kolev, The use of sonication to increase extraction rate in
    polymer inclusion membranes. An application to the extraction
    of gold(III), J. Membr. Sci., 365 (2010) 242–247. 
 
  -  D. Bożejewicz, K. Witt, M.A. Kaczorowska, The comparison
    of the removal of copper(II) and zinc(II) ions from aqueous
    solution using 2,6-diaminopyridine in a polymer inclusion
    membrane and in a classic solvent extraction, Desal. Water
    Treat., 214 (2021) 194–202. 
 
  -  M. Ulewicz, U. Lesinska, M. Bochenska, Transport of lead
    across polymer inclusion membrane with p-tert-butylcalix[4]arene derivatives, Physicochem. Probl. Miner. Process.,
    44 (2010) 245–256. 
 
  -  M. Baczyńska, M. Rzelewska, M. Regel-Rosocka, M. Wiśniewski,
    Transport of iron ions from chloride solutions using cellulose
    triacetate matrix inclusion membranes with an ionic liquid
    carrier, Chem. Pap., 70 (2016) 172–179. 
 
  -  A. Casadella, O. Schaetzle, K. Nijmeijer, K. Loos, Polymer
    Inclusion Membranes (PIM) for the recovery of potassium in
    the presence of competitive cations, Polymers, 8 (2016) 76, doi:
    10.3390/polym8030076. 
 
  -  E. Radzyminska-Lenarcik, M. Ulewicz, The use of
    1-alkylimidazoles for selective separation of zinc ions in the
    transport process across a polymer inclusion membrane,
    Physicochem. Probl. Miner. Process., 50 (2014) 131–142. 
 
  -  D. Wang, J. Hu, D. Liu, Q. Chen, J. Li, Selective transport and
    simultaneous separation of Cu(II), Zn(II) and Mg(II) using
    a dual polymer inclusion membrane system, J. Membr. Sci.,
    52 (2017) 206–213. 
 
  -  H.I. Turgut, V. Eyupoglu, R.A. Kumbasar, The comprehensive
    investigation of the room temperature ionic liquid additives in
    PVC based polymer inclusion membrane for Cr(VI) transport,
    J. Vinyl Add. Tech., 25 (2019) E107–E119, doi: 10.1002/
    vnl.21649. 
 
  -  T. Zh. Sadyrbaeva, Gold(III) recovery from non-toxic electrolytes
    using hybrid electrodialysis–electrolysis process, Sep. Purif.
    Technol., 86 (2012) 262–265. 
 
  -  P.P. Natesh, S. Govindaradjane, S.P. Kumar, Methodological
    review on recovery of gold from E-waste in India, J. Chem.
    Pharm. Res., 8 (2015) 268–272. 
 
  -  C.K. Lee, K.-I. Rhee, H.-J. Sohn, Recovery of gold from electronic
    scrap by hydrometallurgical process, 
    J. Korean Inst. Resour.
    Recyl., 6 (1997) 36–40.  
  -  A.C. Kasper, H.M. Veit, Gold recovery from printed circuit
    boards of mobile phones scraps using a leaching solution
    alternative to cyanide, Braz. J. Chem. Eng., 35 (2018) 931–942. 
 
  -  M.A. Dehchenari, S. Hosseinpoor, R. Aali, N. Salighehdar
    Iran, M. Mehdipour, Simple method for extracting gold from
    electrical and electronic wastes using hydrometallurgical
    process, Environ. Health Eng. Manage., 
    4 (2016) 55–58.  
  -  A. Ashiq, J. Kulkarni, M. Vithanage. Chapter 10 –
    Hydrometallurgical Recovery of Metals From E-waste, M.N.V.
    Prasad, M. Vithanage, Eds., Electronic Waste Management
    and Treatment Technology, 
    Butterworth-Heinemann, 2019,
    pp. 225–246, ISBN 9780128161906.  
  -  R. Wang, C. Zhang, Y. Zhao, Y. Zhou, E. Ma, J. Bai, J. Wang,
    Recycling gold from printed circuit boards 
    gold-plated layer of
    waste mobile phones in “mild aqua regia” system, J. Cleaner
    Prod., 278 (2021) 123597, doi: 10.1016/j.jclepro.2020.123597.  
  -  Y. Wu, Q. Fang, X. Yi, G. Liu, R.-W. Li, Recovery of gold from
    hydrometallurgical leaching solution of electronic waste via
    spontaneous reduction by polyaniline, Prog. Nat. Sci.: Mater.
    Int., 27 (2017) 514–519. 
 
  -  A. Tuncuk, Lab scale optimization and two-step sequential
    bench scale reactor leaching tests for the chemical dissolution
    of Cu, Au and Ag from waste electrical and electronic equipment
    (WEEE), Waste Manage., 95 (2019) 636–643. 
 
  -  A.K. Awasthi, J. Li, An overview of the potential of eco-friendly
    hybrid strategy for metal recycling from WEEE, Resour.
    Conserv. Recycl., 126 (2017) 228–239. 
 
  -  J. Rydberg, M. Cox, C. Musikas, G.R. Choppin, Principles and
    Practices of Solvent Extraction, 2nd ed., Marcel Dekker, New
    York, 2004, p. 584. 
 
  -  A. Matthew Wilson, P.J. Bailey, P.A. Tasker, J.R. Turkington,
    R.A. Grant, J.B. Love, Solvent extraction: the coordination
    chemistry behind extractive metallurgy, Chem. Soc. Rev.,
    43 (2014) 123–134. 
 
  -  E.D. Doidge, L.M.M. Kinsman, Y. Jo. I. Carson, A.J. Duffy,
    I.A. Kordas, E. Shao, P.A. Tasker, B.T. Ngwenya, C.A. Morrison,
    J.B. Love, Evaluation of simple amides in the selective
    recovery of gold from secondary sources by solvent extraction,
    ACS Sustainable Chem. Eng., 7 (2019) 15019–15029. 
 
  -  E.D. Doidge, I. Carson, P.A. Tasker, R.J. Ellis, C.A. Morrison,
    J.B. Love, A simple primary amide for the selective recovery of
    gold from secondary resources, J. German Chem. Soc., 55 (2016)
    12436–12439. 
 
  -  T. Oshima, T. Koyama, A.N. Otsuki, A comparative study on
    the extraction of Au(III) using cyclopentyl methyl ether, dibutyl
    carbitol, and methyl isobutyl ketone in acidic chloride media,
    Solvent Extr. Ion Exch., 39 (2021) 477–490. 
 
  -  A. Alzate, M.E. López, C. Serna, Recovery of gold from waste
    electrical and electronic equipment (WEEE) using ammonium
    persulfate, Waste Manage., 57 (2016) 113–120. 
 
  -  K. Campos, T. Vincent, P. Bunio, A. Trochimczuk, E. Guibal,
    Gold recovery from HCl solutions using 
    Cyphos IL-101
    (a quaternary phosphonium ionic liquid) immobilized in
    biopolymer capsules, Solvent Extr. Ion Exch., 26 (2008) 570–601.  
  -  J.C. Aguilar Cordero, M. Sanchez-Castellanos, E. Rodriguez
    de San Miguel, J. de Gyves, Cd(II) and Pb(II) extraction and
    transport modeling in SLM and PIM systems using Kelex 100 as
    carrier, J. Membr. Sci., 190 (2001) 107–118. 
 
  -  M. Macias, E.R. de San Miguel, Optimization of Ni(II) facilitated
    transport from aqueous solutions using a polymer inclusion
    membrane, Water Air Soil Pollut., 232 (2021), doi: 10.1007/s11270-021-04998-4. 
 
  -  E.R. de San Miguel, A.V. Garduño-García, J.C. Aguilar,
    J. de Gyves, Gold(III) transport through polymer inclusion
    membranes: efficiency factors and pertraction mechanism
    using Kelex 100 as carrier, Ind. Eng. Chem. Res., 46 (2007)
    2861–2869. 
 
  -  E.R. de San Miguel, A.V. Garduno-Garcia, M.E. Nunez-Gaytan,
    J.C. Aguilar, J. de Gyves, Application of an organic-inorganic
    hybrid membrane for selective gold(III) permeation, J. Membr.
    Sci., 307 (2008) 1–9. 
 
  -  H. Mahandra, R. Singh, B. Gupta, Liquid–liquid extraction
    studies on Zn(II) and Cd(II) using phosphonium ionic liquid
    (Cyphos IL-104) and recovery of zinc from zinc plating mud,
    Sep. Purif. Technol., 177 (2017) 281–292. 
 
  -  Z. Zhu, K. Tulpatowicz, Y. Pranolo, C.Y. Cheng, Solvent
    extraction of molybdenum and vanadium from sulphate
    solutions with Cyphos IL-101, Hydrometallurgy, 154 (2015)
    72–77. 
 
  -  A. Kumari, M.K. Sinha, S.K. Sahu, B.D. Pandey, Solvent
    extraction and separation of trivalent lanthanides using Cyphos
    IL-104, a novel phosphonium ionic liquid as extractant, Solvent
    Extr. Ion Exch., 34 (2016) 469–484. 
 
  -  M.R. Yaftian, M.I.G.S. Almeida, R.W. Cattrall, S.D. Kolev, Selective
    extraction of vanadium(V) from sulfate solutions into a polymer
    inclusion membrane composed of poly(vinylidenefluoride-co-
    hexafluoropropylene) and Cyphos® IL 101, J. Membr. Sci.,
    545 (2018) 57–65. 
 
  -  M. Baczyńska, M. Waszak, M. Nowicki, D. Prządka, S. Borysiak,
    M. Regel-Rosocka, Characterization of polymer inclusion
    membranes (PIMs) containing phosphonium ionic liquids as
    Zn(II) carriers, Ind. Eng. Chem. Res., 57 (2018) 5070–5082. 
 
  -  B. Pospiech, Separation of cadmium(II), cobalt(II) and nickel(II)
    by transport through polymer inclusion membranes with
    phosphonium ionic liquid as ion carrier, Arch. Metall. Mater.,
    60 (2015) 2933–2938. 
 
  -  Y.Y.N. Bonggotgetsakul, R.W. Cattrall, S.D. Kolev, Recovery
    of gold from aqua regia digested electronic scrap using a
    poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)
    based polymer inclusion membrane (PIM) containing Cyphos
    IL-104, J. Membr. Sci., 514 (2016) 274–281. 
 
  -  Y.Y.N. Bonggotgetsakul, R.W. Cattrall, S.D. Kolev, Extraction
    of gold(III) from hydrochloric acid solutions with a PVC-based
    polymer inclusion membrane (PIM) containing Cyphos® IL
    104, Membranes, 5 (2015) 903–914. 
 
  -  F. Kubota, R. Kono, W. Yoshida, M. Sharaf, S.D. Kolev, M. Goto,
    Recovery of gold ions from discarded mobile phone leachate
    by solvent extraction and polymer inclusion membrane (PIM)
    based separation using an amic acid extractant, Sep. Sci.
    Technol., 214 (2019) 156–161. 
 
  -  L.F. Campo-Cobo, M.L. Perez-Urbano, T.M. Gutierrez-Valencia, O.L. Hoyos-Saavedra, G. Cuervo-Ochoa, Selective
    extraction of gold with polymeric inclusion membranes
    based on salen ligands with electron-accepting substituents,
    J. Inorg. Organomet. Polym., 31 (2021) 1–11, doi: 10.1007/s10904-021-01924-3. 
 
  -  M.N. Ştefănuţ, Z. Űrmösi, A. Căta, P. Sfîrloagă, C. Tănasie,
    Studies for gold and silver recovery from waste electronic
    equipment, Rev. Roum. Chim., 58 (2013) 673–678. 
 
  -  S. Laki, A. Arabi Shamsabadi, F. Seidi, M. Soroush, Sustainable
    recovery of silver from deactivated catalysts using a novel
    process combining leaching and emulsion liquid membrane
    techniques, Ind. Eng. Chem. Res., 57 (2018) 13821–13832. 
 
  -  K. Shimojo, M. Goto, Solvent extraction and stripping of silver
    ions in room-temperature ionic liquids containing calixarenes,
    Anal. Chem., 76 (2004) 5039–5044. 
 
  -  A. Nowik-Zajac, I. Zawierucha, C. Kozlowski, Selective removal
    of silver(I) using polymer inclusion membranes containing
    calixpyrroles, RSC Adv., 9 (2019) 31122–31132. 
 
  -  A. Nowik-Zajac, I. Zawierucha, C. Kozlowski, Selective transport
    of Ag(I) through a polymer inclusion membrane containing
    a calix[4]pyrrole derivative from nitrate aqueous solutions,
    Int. J. Mol. Sci., 21 (2020) 5348, doi: 10.3390/ijms21155348. 
 
  -  E. Radzyminska-Lenarcik, M. Ulewicz, I. Pyszka, Application
    of polymer inclusion membranes doped with alkylimidazole
    to separation of silver and zinc ions from model solutions and
    after battery leaching, Materials, 13 (2020) 3103, doi: 10.3390/ma13143103. 
 
  -  T. Wongsawa, N. Traiwongsa, U. Pancharoen, K. Nootong,
    A review of the recovery of precious metals using ionic liquid
    extractants in hydrometallurgical processes, Hydrometalurgy,
    198 (2020) 105488, doi:10.1016/j.hydromet.2020.105488. 
 
  -  A. Cieszyńska, M. Wiśniewski, Extraction of palladium(II) from
    chloride solutions with Cyphos®IL 101/toluene mixtures as
    novel extractant, Sep. Purif. Technol., 73 (2010) 202–207. 
 
  -  A. Cieszńska, M. Wiśniewski, Extractive recovery of
    palladium(II) from hydrochloric acid solutions with Cyphos®IL
    104, Hydrometallurgy, 113–114 (2012) 79–85. 
 
  -  M. Regel-Rosocka, M. Rzelewska, M. Baczyńska, M. Janus,
    M. Wiśniewski, Removal of palladium(II) from aqueous
    chloride solutions with Cyphos phosphonium ionic liquids as
    metal ion carriers for liquid–liquid extraction and transport
    across polymer inclusion membranes, Physicochem. Probl.
    Miner. Process., 51 (2015) 621–631. 
 
  -  A.T.N. Fajar, F. Kubota, M.L. Firmansyah, M. Goto, Separation
    of palladium(II) and rhodium(III) using a polymer inclusion
    membrane containing a phosphonium-based ionic liquid
    carrier, Ind. Eng. Chem. Res., 58 (2019) 22334–22342. 
 
  -  B. Pośpiech, Highly efficient facilitated membrane transport of
    palladium(II) ions from hydrochloric acid solutions through
    plasticizer membranes with Cyanex 471X, Physicochem. Probl.
    Miner. Process., 51 (2015) 281–291. 
 
  -  M. Shao, S. Li, C. Jin, M. Chen, Z. Huang, Recovery of Pd(II)
    from hydrochloric acid medium by solvent extraction–
    direct electrodeposition using hydrophilic/hydrophobic ILs,
    ACS Omega, 5 (2020) 27188–27196. 
 
  -  D. Bourgeois, V. Lacanau, R. Mastretta, C. Contino-Pepin,
    D. Meyer, A simple process for the recovery of palladium from
    wastes of printed circuit boards, Hydrometallurgy, 191 (2020)
    105241, doi: 10.1016/j.hydromet.2019.105241. 
 
  -  R. Jha, M.D. Rao, A. Meshram, H.R. Verma, K.K. Singh,
    Potential of polymer inclusion membrane process for selective
    recovery of metal values from waste printed circuit boards:
    a review, J. Cleaner Prod., 265 (2020) 121621, doi: 10.1016/j.
    jclepro.2020.121621. 
 
  -  R.G. Charles, P. Douglas, I.L. Hallin, I. Matthews, G. Liversage,
    An investigation of trends in precious metal and copper content
    of RAM modules in WEEE: implications for long term recycling
    potential, Waste Manage., 60 (2017) 505–520.