References

  1. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452 (2008) 301–310.
  2. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  3. S.S. Shenvi, A.M. Isloor, A. Ismail, A review on RO membrane technology: developments and challenges, Desalination, 368 (2015) 10–26.
  4. J. Kim, K. Park, D.R. Yang, S. Hong, A comprehensive review of energy consumption of seawater reverse osmosis desalination plants, Appl. Energy, 254 (2019) 113652, doi: 10.1016/j.apenergy. 2019.113652.
  5. T. Qiu, Desalination of Brackish Water by a Batch Reverse Osmosis Desalink System for Use with Solar Thermal Energy, Ph.D. Thesis, Aston University, Birmingham, UK, 2014.
  6. T. Qiu, P. Davies, Concentration polarization model of spiralwound membrane modules with application to batch-mode RO desalination of brackish water, Desalination, 368 (2015) 36–47.
  7. P. Davies, A. Afifi, F. Khatoon, G. Kuldip, S. Javed, S. Khan, Double-Acting Batch-RO System for Desalination of Brackish Water with High Efficiency and High Recovery, Desalination for the Environment–Clean Energy and Water, Rome, 2016.
  8. J. Swaminathan, E.W. Tow, R.L. Stover, Practical aspects of batch RO design for energy-efficient seawater desalination, Desalination, 470 (2019) 114097, doi: 10.1016/j.desal.2019.114097.
  9. D.E.M. Warsinger, J.H. Lienhard, E.W. Tow, R.K. McGovern, G.P. Thiel, Batch Pressure-Driven Membrane Separation with Closed-Flow Loop and Reservoir, United States Patent, US20170239620A1, 2019.
  10. Q.J. Wei, C.I. Tucker, P.J. Wu, A.M. Trueworthy, E.W. Tow, J.H. Lienhard, True Batch Reverse Osmosis Prototype: Model Validation and Energy Savings, The International Desalination Association World Congress on Desalination and Water Reuse, Dubai, 2019.
  11. K. Park, L. Burlace, N. Dhakal, A. Mudgal, N.A. Stewart, P.A. Davies, Design, modelling and optimisation of a batch reverse osmosis (RO) desalination system using a free piston for brackish water treatment, Desalination, 494 (2020) 114625, doi: 10.1016/j.desal.2020.114625.
  12. D.M. Warsinger, E.W. Tow, L.A. Maswadeh, G.B. Connors, J. Swaminathan, J.H. Lienhard, Inorganic fouling mitigation by salinity cycling in batch reverse osmosis, Water Res., 137 (2018) 384–394.
  13. S. Nejati, S.A. Mirbagheri, D.M. Warsinger, M. Fazeli, Biofouling in seawater reverse osmosis (SWRO): impact of module geometry and mitigation with ultrafiltration, J. Water Process Eng., 29 (2019) 100782, doi:10.1016/j.jwpe.2019.100782.
  14. A. Efraty, Closed circuit desalination series no-6: conventional RO compared with the conceptually different new closed circuit desalination technology, Desal. Water Treat., 41 (2012) 279–295.
  15. T. Lee, J.Y. Choi, Y. Cohen, Gypsum scaling propensity in semibatch RO (SBRO) and steady-state RO with partial recycle (SSRO-PR), J. Membr. Sci., 588 (2019) 117106, doi: 10.1016/j. memsci.2019.05.030.
  16. S.M. Riley, D.C. Ahoor, K. Oetjen, T.Y. Cath, Closed circuit desalination of O&G produced water: an evaluation of NF/RO performance and integrity, Desalination, 442 (2018) 51–61.
  17. S. Cordoba, A. Das, J. Leon, J.M. Garcia, D.M. Warsinger, Double-acting batch reverse osmosis configuration for best in-class efficiency and low downtime, Desalination, 506 (2021) 114959, doi:10.1016/j.desal.2021.114959.
  18. J.R. Werber, A. Deshmukh, M. Elimelech, Can batch or semibatch processes save energy in reverse-osmosis desalination?, Desalination, 402 (2017) 109–122.
  19. Q.J. Wei, C.I. Tucker, P.J. Wu, A.M. Trueworthy, E.W. Tow, J.H. Lienhard, Batch Reverse Osmosis: Experimental Results, Model Validation, and Design Implications, AMTA/AWWA Membrane Technology Conference & Exposition, New Orleans, 2019.
  20. P.A. Davies, J. Wayman, C. Alatta, K. Nguyen, J. Orfi, A desalination system with efficiency approaching the theoretical limits, Desal. Water Treat., 57 (2016) 23206–23216.
  21. T. Qiu, P.A. Davies, Comparison of configurations for highrecovery inland desalination systems, Water, 4 (2012) 690–706.
  22. Q.J. Wei, C.I. Tucker, P.J. Wu, A.M. Trueworthy, E.W. Tow, J. Lienhard, Impact of salt retention on true batch reverse osmosis energy consumption: experiments and model validation, Desalination, 479 (2020) 114177, doi: 10.1016/j. desal.2019.114177.
  23. H. Abu Ali, M. Baronian, L. Burlace, P.A. Davies, S. Halasah, M. Hind, A. Hossain, C. Lipchin, A. Majali, M. Mark, Off-grid desalination for irrigation in the Jordan Valley, Desal. Water Treat., 168 (2019) 143–154.
  24. J.H. Lienhard, G.P. Thiel, D.M. Warsinger, L.D. Banchik, Low Carbon Desalination: Status and Research, Development, and Demonstration Needs, Report of a Workshop Conducted at the Massachusetts Institute of Technology in Association with the Global Clean Water Desalination Alliance, 2016.
  25. O. Igobo, Low-Temperature Isothermal Rankine Cycle for Desalination, Ph.D. Thesis, Aston University, Birmingham, UK, 2016.
  26. D.M. Warsinger, E.W. Tow, K.G. Nayar, L.A. Maswadeh, Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination, Water Res., 106 (2016) 272–282.
  27. S. Jiang, Y. Li, B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies, Sci. Total Environ., 595 (2017) 567–583.
  28. J.W. Mullin, Crystallization, Butterworth-Heiman, London, 2001, pp. 86–134.
  29. S. Boerlage, Scaling and Particulate Fouling in Membrane Filtration Systems, CRC Press, Delft, 2001.
  30. H.-C. Flemming, Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions, in: Biofilm Highlights, Springer, Berlin, 2011, pp. 81–109.
  31. H. Shon, S. Vigneswaran, S.A. Snyder, Effluent organic matter (EfOM) in wastewater: constituents, effects, and treatment, Critical Rev. Environ. Sci. Technol., 36 (2006) 327–374.
  32. M. Al-Ahmad, F.A. Aleem, A. Mutiri, A. Ubaisy, Biofuoling in RO membrane systems Part 1: Fundamentals and control, Desalination, 132 (2000) 173–179.
  33. X. Zhu, M. Elimelech, Fouling of reverse osmosis membranes by aluminum oxide colloids, J. Environ. Eng., 121 (1995) 884–892.
  34. C. Dai, A.G. Stack, A. Koishi, A. Fernandez-Martinez, S.S. Lee, Y. Hu, Heterogeneous nucleation and growth of barium sulfate at organic–water interfaces: interplay between surface hydrophobicity and Ba2+ adsorption, Langmuir, 32 (2016) 5277–5284.
  35. N. Dhakal, Reducing Consumption of Chemicals in Reverse Osmosis Systems, Institute for Water Education, UNESCO-IHE Delft, Netherlands, 2011.
  36. S. Lee, C. Boo, M. Elimelech, S. Hong, Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO), J. Membr. Sci., 365 (2010) 34–39.
  37. T. Nguyen, F.A. Roddick, L. Fan, Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures, Membranes, 2 (2012) 804–840.
  38. M. Jafari, A. D’haese, J. Zlopasa, E. Cornelissen, J.S. Vrouwenvelder, K. Verbeken, A. Verliefde, M. van Loosdrecht, C. Picioreanu, A comparison between chemical cleaning efficiency in lab-scale and full-scale reverse osmosis membranes: role of extracellular polymeric substances (EPS), J. Membr. Sci., 609 (2020) 118189, doi: 10.1016/j.memsci.2020.118189.
  39. B. Bendinger, H.H. Rijnaarts, K. Altendorf, A.J. Zehnder, Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids, Appl. Environ. Microbiol., 59 (1993) 3973–3977.
  40. H.J. Busscher, A.H. Weerkamp, Specific and non-specific interactions in bacterial adhesion to solid substrata, FEMS Microbiol. Rev., 3 (1987) 165–173.
  41. R.A. Al-Juboori, T. Yusaf, Biofouling in RO system: mechanisms, monitoring and controlling, Desalination, 302 (2012) 1–23.
  42. J. Kramer, D. Tracey, The Solution to Reverse Osmosis Biofouling, Proceedings of IDA World Congress on Desalination and Water Use, 1995, pp. 33–44.
  43. H.F. Ridgway, H-C Flemming, Bacterial Adhesion and Fouling of Reverse Osmosis Membranes, Reverse Osmosis Technology, Marcel Dekker, New York, 1988, pp. 429–481.
  44. H.-C. Flemming, Reverse osmosis membrane biofouling, Exp. Therm. Fluid Sci., 14 (1997) 382–391.
  45. F.F. Abraham, Homogeneous Nucleation Theory, Academic Press, New York, 1974.
  46. A. Matin, F. Rahman, H.Z. Shafi, S.M. Zubair, Scaling of reverse osmosis membranes used in water desalination: phenomena, impact, and control; future directions, Desalination, 455 (2019) 135–157.
  47. K.D. Cobry, Z. Yuan, J. Gilron, V.M. Bright, W.B. Krantz, A.R. Greenberg, Comprehensive experimental studies of earlystage membrane scaling during nanofiltration, Desalination, 283 (2011) 40–51.
  48. N. Her, G. Amy, C. Jarusutthirak, Seasonal variations of nanofiltration (NF) foulants: identification and control, Desalination, 132 (2000) 143–160.
  49. H.-J. Lee, M.A. Halali, T. Baker, S. Sarathy, C.-F. De Lannoy, A comparative study of RO membrane scale inhibitors in wastewater reclamation: antiscalants versus pH adjustment, Separation and Purification Technology, 240 (2020) 116549, doi: 10.1016/j.seppur.2020.116549.
  50. H.-J. Oh, Y.-K. Choung, S. Lee, J.-S. Choi, T.-M. Hwang, J.H. Kim, Scale formation in reverse osmosis desalination: model development, Desalination, 238 (2009) 333–346.
  51. A.N. Quay, T. Tong, S.M. Hashmi, Y. Zhou, S. Zhao, M. Elimelech, Combined organic fouling and inorganic scaling in reverse osmosis: role of protein–silica interactions, Environ. Sci. Technol., 52 (2018) 9145–9153.
  52. T. Waly, Minimizing the Use of Chemicals to Control Scaling in SWRO: Improved Prediction of the Scaling Potential of Calcium Carbonate, UNESCO-IHE Institute for Water Education, Delft University of Technology, Taylor and Francis, Oxfordshire, United Kingdom, 2011.
  53. A.E. Nielsen, O. Söhnel, Interfacial tensions electrolyte crystalaqueous solution, from nucleation data, J. Cryst. Growth, 11 (1971) 233–242.
  54. O. Söhnel, J.W. Mullin, Interpretation of crystallization induction periods, J. Colloid Interface Sci., 123 (1988) 43–50.
  55. S. Jiang, J.H. Ter Horst, Crystal nucleation rates from probability distributions of induction times, Cryst. Growth Des., 11 (2011) 256–261.
  56. C.Y. Tang, T. Chong, A.G. Fane, Colloidal interactions and fouling of NF and RO membranes: a review, Adv. Colloid Interface Sci., 164 (2011) 126–143.
  57. B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Progr. Surf. Sci., 43 (1993) 30–59.
  58. J. Gregory, Particles in Water: Properties and Processes, CRC Press, Taylor and Francis, Oxfordshire, United Kingdom, 2005.
  59. J. Buffle, G.G. Leppard, Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material, Environ. Sci. Technol., 29 (1995) 2169–2175.
  60. J. Buffle, G. Leppard, Characterization of aquatic colloids and macromolecules. 2. Key role of physical structures on analytical results, Environ. Sci. Technol., 29 (1995) 2176–2184.
  61. J. Buffle, K.J. Wilkinson, S. Stoll, M. Filella, J. Zhang, A generalized description of aquatic colloidal interactions: the three-colloidal component approach, Environ. Sci. Technol., 32 (1998) 2887–2899.
  62. T. Berman, R. Mizrahi, C.G. Dosoretz, Transparent exopolymer particles (TEP): a critical factor in aquatic biofilm initiation and fouling on filtration membranes, Desalination, 276 (2011) 184–190.
  63. A. Fane, Ultrafiltration: factors influencing flux and rejection, Progr. Filtr. Sep., 4 (1986) 101–179.
  64. G. Belfort, B. Marx, Artificial particulate fouling of hyperfiltration membranes—II analysis and protection from fouling, Desalination, 28 (1979) 13–30.
  65. G. Belfort, F.W. Altena, Toward an inductive understanding of membrane fouling, Desalination, 47 (1983) 105–127.
  66. J. Gilron, D. Hasson, Calcium sulphate fouling of reverse osmosis membranes: flux decline mechanism, Chem. Eng. Sci., 42 (1987) 2351–2360.
  67. H.-C. Flemming, A. Tamachkiarowa, J. Klahre, J. Schmitt, Monitoring of fouling and biofouling in technical systems, Water Sci. Technol., 38 (1998) 291–298.
  68. I.S. Ngene, Real Time Visual Characterization of Membrane Fouling and Cleaning, University of Twente, Enschede, Netherlands, 2010, p. 115.
  69. H. Li, A.G. Fane, H.G. Coster, S. Vigneswaran, Direct observation of particle deposition on the membrane surface during crossflow microfiltration, J. Membr. Sci., 149 (1998) 83–97.
  70. H. Li, A. Fane, H. Coster, S. Vigneswaran, An assessment of depolarisation models of crossflow microfiltration by direct observation through the membrane, J. Membr. Sci., 172 (2000) 135–147.
  71. H. Li, A. Fane, H. Coster, S. Vigneswaran, Observation of deposition and removal behaviour of submicron bacteria on the membrane surface during crossflow microfiltration, J. Membr. Sci., 217 (2003) 29–41.
  72. J. Vrouwenvelder, J. Kruithof, Biofouling of Spiral Wound Membrane Systems, IWA Publishing, London, United Kingdom, 2011.
  73. J. Vrouwenvelder, J. Van Paassen, L. Wessels, A. Van Dam, S. Bakker, The membrane fouling simulator: a practical tool for fouling prediction and control, J. Membr. Sci., 281 (2006) 316–324.
  74. N. Siebdrath, W. Ding, E. Pietsch, J. Kruithof, W. Uhl, J.S. Vrouwenvelder, Construction and validation of a longchannel membrane test cell for representative monitoring of performance and characterization of fouling over the length of spiral-wound membrane modules, Desal. Water Treat., 89 (2017) 1–16.
  75. J. Vrouwenvelder, S. Manolarakis, J. Van der Hoek, J. Van Paassen, W.G.J. van der Meer, J. Van Agtmaal, H. Prummel, J. Kruithof, M. Van Loosdrecht, Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations, Water Res., 42 (2008) 4856–4868.
  76. J. Vrouwenvelder, J. Van Paassen, J. Van Agtmaal, M. Van Loosdrecht, J. Kruithof, A critical flux to avoid biofouling of spiral wound nanofiltration and reverse osmosis membranes: fact or fiction?, J. Membr. Sci., 326 (2009) 36–44.
  77. J. Vrouwenvelder, D.G. Von Der Schulenburg, J. Kruithof, M. Johns, M. Van Loosdrecht, Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem, Water Res., 43 (2009) 583–594.
  78. N.R. Sarker, A.M. Bilton, Real-time computational imaging of reverse osmosis membrane scaling under intermittent operation, J. Membr. Sci., 636 (2021) 119556, doi: 10.1016/j. memsci.2021.119556.
  79. M. Freire-Gormaly, A. Bilton, An experimental system for characterization of membrane fouling of solar photovoltaic reverse osmosis systems under intermittent operation, Desal. Water Treat., 73 (2017) 54–63.
  80. M. Freire-Gormaly, A. Bilton, Experimental quantification of the effect of intermittent operation on membrane performance of solar powered reverse osmosis desalination systems, Desalination, 435 (2018) 188–197.
  81. M. Pontié, S. Rapenne, A. Thekkedath, J. Duchesne, V. Jacquemet, J. Leparc, H. Suty, Tools for membrane autopsies and antifouling strategies in seawater feeds: a review, Desalination, 181 (2005) 75–90.
  82. F. Butt, F. Rahman, U. Baduruthamal, Identification of scale deposits through membrane autopsy, Desalination, 101 (1995) 219–230.
  83. L. Fortunato, A.H. Alshahri, A.S. Farinha, I. Zakzouk, S. Jeong, T. Leiknes, Fouling investigation of a full-scale seawater reverse osmosis desalination (SWRO) plant on the Red Sea: membrane autopsy and pretreatment efficiency, Desalination, 496 (2020) 114536, doi: 10.1016/j.desal.2020.114536.
  84. X. Li, H. Zhang, Y. Hou, Y. Gao, J. Li, W. Guo, H.H. Ngo, In situ investigation of combined organic and colloidal fouling for nanofiltration membrane using ultrasonic time domain reflectometry, Desalination, 362 (2015) 43–51.
  85. X. Li, J. Li, J. Wang, H. Zhang, Y. Pan, In situ investigation of fouling behavior in submerged hollow fiber membrane module under sub-critical flux operation via ultrasonic time domain reflectometry, J. Membr. Sci., 411 (2012) 137–145.
  86. X. Li, J. Li, J. Wang, H. Wang, C. Cui, B. He, H. Zhang, Direct monitoring of sub-critical flux fouling in a horizontal doubleend submerged hollow fiber membrane module using ultrasonic time domain reflectometry, J. Membr. Sci., 451 (2014) 226–233.
  87. Z. Zhang, V.M. Bright, A.R. Greenberg, Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration, Sens. Actuators, B, 117 (2006) 323–331.
  88. H.-C. Flemming, G. Schaule, R. McDonogh, H.F. Ridgway, Effects and Extent of Biofilm Accumulation in Membrane Systems, Biofouling and Biocorrosion in Industrial Water Systems, Springer Publishing, New York City, United States of America, 1994, pp. 63–89.
  89. A. Siddiqui, I. Pinel, E. Prest, S. Bucs, M. van Loosdrecht, J. Kruithof, J.S. Vrouwenvelder, Application of DBNPA dosage for biofouling control in spiral wound membrane systems, Desal. Water Treat., 68 (2017) 12–22.
  90. N. Farhat, J.S. Vrouwenvelder, M.C. Van Loosdrecht, S.S. Bucs, M. Staal, Effect of water temperature on biofouling development in reverse osmosis membrane systems, Water Res., 103 (2016) 149–159.
  91. F. Beyer, J. Laurinonyte, A. Zwijnenburg, A.J. Stams, C.M. Plugge, Membrane fouling and chemical cleaning in three full-scale reverse osmosis plants producing demineralized water, J. Eng., 2017 (2017) 6356751, doi: 10.1155/2017/6356751.
  92. S. Gare, RO systems: the importance of pre-treatment, Filtr. Sep., 39 (2002) 22–27.
  93. A. Matin, T. Laoui, W. Falath, A.M. Farooque, Fouling control in reverse osmosis for water desalination and reuse: current practices and emerging environment-friendly technologies, Sci. Total Environ., 765 (2020) 142721, doi: 10.1016/j. scitotenv.2020.142721.
  94. J.K. Edzwald, J. Haarhoff, Seawater pretreatment for reverse osmosis: chemistry, contaminants, and coagulation, Water Res., 45 (2011) 5428–5440.
  95. P.N. Johnson, A. Amirtharajah, Ferric chloride and alum as single and dual coagulants, J. Am. Water Works Assoc., 75 (1983) 232–239.
  96. J. Duan, J. Wang, N. Graham, F. Wilson, Coagulation of humic acid by aluminium sulphate in saline water conditions, Desalination, 150 (2002) 1–14.
  97. M. Umar, F. Roddick, L. Fan, Comparison of coagulation efficiency of aluminium and ferric-based coagulants as pre-treatment for UVC/H2O2 treatment of wastewater RO concentrate, Chem. Eng. J., 284 (2016) 841–849.
  98. N.K. Shammas, Coagulation and Flocculation, Humana Press, Totowa, 2005, pp. 103–139.
  99. S.A.A. Tabatabai, J.C. Schippers, M.D. Kennedy, Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis, Water Res., 59 (2014) 283–294.
  100. J. Kavitha, M. Rajalakshmi, A. Phani, M. Padaki, Pretreatment processes for seawater reverse osmosis desalination systems—a review, J. Water Process Eng., 32 (2019) 100926, doi: 10.1016/j.jwpe.2019.100926.
  101. S.M. Korotta-Gamage, A. Sathasivan, A review: potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167 (2017) 120–138.
  102. E. Bar-Zeev, N. Belkin, B. Liberman, T. Berman, I. Berman-Frank, Rapid sand filtration pretreatment for SWRO: microbial maturation dynamics and filtration efficiency of organic matter, Desalination, 286 (2012) 120–130.
  103. L. Huisman, W.E. Wood, Slow Sand Filtration, World Health Organization, WHO Press, Geneva, Switzerland, 1974.
  104. A. Alhadidi, A.J. Kemperman, R. Schurer, J. Schippers, M. Wessling, W.G.J. van der Meer, Using SDI, SDI+ and MFI to evaluate fouling in a UF/RO desalination pilot plant, Desalination, 285 (2012) 153–162.
  105. G. Pearce, S. Talo, K. Chida, A. Basha, A. Gulamhusein, Pretreatment options for large scale SWRO plants: case studies of trials at Kindasa, Saudi Arabia, and conventional pretreatment in Spain, Desalination, 167 (2004) 175–189.
  106. D.F. Halpern, J. McArdle, B. Antrim, UF pretreatment for SWRO: pilot studies, Desalination, 182 (2005) 323–332.
  107. M. Busch, R. Chu, U. Kolbe, Q. Meng, S. Li, Ultrafiltration pretreatment to reverse osmosis for seawater desalination — three years field experience in the Wangtan Datang power plant, Desal. Water Treat., 10 (2009) 1–20.
  108. S. Van Hoof, A. Hashim, A. Kordes, The effect of ultrafiltration as pretreatment to reverse osmosis in wastewater reuse and seawater desalination applications, Desalination, 124 (1999) 231–242.
  109. A.M. Farooque, A.M. Hassan, A. Al-Amoudi, Autopsy and Characterisation of NF Membranes after Long-Term Operation in a NF-SWRO Pilot Plant, IDA World Congress on Desalination and Water Reuse, San Diego, CA, 1999.
  110. A. Hassan, A. Farooque, A. Jamaluddin, A. Al-Amoudi, M. Al-Sofi, A. Al-Rubaian, N. Kither, I. Al-Tisan, A. Rowaili, A demonstration plant based on the new NF-SWRO process, Desalination, 131 (2000) 157–171.
  111. A.S. Al-Amoudi, A.M. Farooque, Performance restoration and autopsy of NF membranes used in seawater pretreatment, Desalination, 178 (2005) 261–271.
  112. A.A. Al-Hajouri, A.S. Al-Amoudi, A.M. Farooque, Long term experience in the operation of nanofiltration pretreatment unit for seawater desalination at SWCC SWRO plant, Desal. Water Treat., 51 (2013) 1861–1873.
  113. S. Haig, G. Collins, R. Davies, C. Dorea, C. Quince, Biological aspects of slow sand filtration: past, present and future, Water Sci. Technol.: Water Supply, 11 (2011) 468–472.
  114. F.F. de Oliveira, R.P. Schneider, Slow sand filtration for biofouling reduction in seawater desalination by reverse osmosis, Water Res., 155 (2019) 474–486.
  115. S. Jamaly, N. Darwish, I. Ahmed, S. Hasan, A short review on reverse osmosis pretreatment technologies, Desalination, 354 (2014) 30–38.
  116. A.F. Corral, U. Yenal, R. Strickle, D. Yan, E. Holler, C. Hill, W.P. Ela, R.G. Arnold, Comparison of slow sand filtration and microfiltration as pretreatments for inland desalination via reverse osmosis, Desalination, 334 (2014) 1–9.
  117. W. Song, V. Ravindran, B.E. Koel, M. Pirbazari, Nanofiltration of natural organic matter with H2O2/UV pretreatment: fouling mitigation and membrane surface characterization, J. Membr. Sci., 241 (2004) 143–160.
  118. Y. Jin, H. Lee, M. Zhan, S. Hong, UV radiation pretreatment for reverse osmosis (RO) process in ultrapure water (UPW) production, Desalination, 439 (2018) 138–146.
  119. W. Han, P. Zhang, W. Zhu, J. Yin, L. Li, Photocatalysis of p-chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV light, Water Res., 38 (2004) 4197–4203.
  120. D. Cassan, B. Mercier, F. Castex, A. Rambaud, Effects of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool, Chemosphere, 62 (2006) 1507–1513.
  121. W. Collentro, A novel approach to control microbial fouling of reverse osmosis elements, Ultrapure Water J., 31 (2014) 27–34.
  122. H.A. Di Martino Patrick, H. Ahmed, H. Véronique, M. Cyril, Assessment of UV Pre-Treatment to Reduce Fouling of NF Membranes, R.Y. Ning, Ed., Expanding Issues in Desalination, 2011, p. 219, doi: 10.5772/22462. Available at: https://www. intechopen.com/chapters/20351
  123. H.-N.G. Company, Chemical Pretreatment for RO and NF, H.-N.G. Company (Ed.), California, United States of America, 2013.
  124. E. Darton, Scale inhibition techniques used in membrane systems, Desalination, 113 (1997) 227–229.
  125. E.K. Zeiher, B. Ho, K.D. Williams, Novel antiscalant dosing control, Desalination, 157 (2003) 209–216.
  126. H. Li, W. Liu, X. Qi, Evaluation of a novel CaSO4 scale inhibitor for a reverse osmosis system, Desalination, 214 (2007) 193–199.
  127. M.K. Shahid, M. Pyo, Y.-G. Choi, The operation of reverse osmosis system with CO2 as a scale inhibitor: a study on operational behavior and membrane morphology, Desalination, 426 (2018) 11–20.
  128. M. Schönbächler, M. Fehr, Basics of Ion Exchange Chromatography for Selected Geological Applications, Treatise on Geochemistry, Vol. 15: Analytical Geochemistry/Inorganic Instrument Analysis, Elsevier, 2013,
    pp. 124–146.
  129. G. Klein, T.J. Jarvis, T. Vermeulen, Fluidized-bed ion exchange with precipitation-principles and bench-scale development, Recent Dev. Sep. Sci., 5 (1979) 185–198.
  130. T. Vermeulen, B.W. Tleimat, G. Klein, Ion-exchange pretreatment for scale prevention in desalting systems, Desalination, 47 (1983) 149–159.
  131. G. Klein, Design and Development of Cyclic Operations, Percolation Processes: Theory and Applications, Sijthoff & Noordhoff Alphen aan den Rijn, Netherlands, 1981, pp. 427–441.
  132. A. Venkatesan, P.C. Wankat, Simulation of ion exchange water softening pretreatment for reverse osmosis desalination of brackish water, Desalination, 271 (2011) 122–131.
  133. A. Zhu, Energy and Cost Optimization of Reverse Osmosis Desalination, University of California, Los Angeles, 2012.
  134. M. Futterlieb, I.M. ElSherbiny, M. Tuczinski, J. Lipnizki, S. Panglisch, Limits of high recovery inland desalination: closed‐circuit reverse osmosis–a viable option?, Chemie Ingenieur Technik, 93 (2021) 1359–1368.
  135. D. Kim, S. Jung, J. Sohn, H. Kim, S. Lee, Biocide application for controlling biofouling of SWRO membranes—an overview, Desalination, 238 (2009) 43–52.
  136. N. Nagaraja, L. Skillman, Z. Xie, S. Jiang, G. Ho, D. Li, Investigation of compounds that degrade biofilm polysaccharides on reverse osmosis membranes from a fullscale desalination plant to alleviate biofouling, Desalination, 403 (2017) 88–96.
  137. B.S. Oh, H.Y. Jang, J. Cho, S. Lee, E. Lee, I.S. Kim, T.M. Hwang, J.-W. Kang, Effect of ozone on microfiltration as a pretreatment of seawater reverse osmosis, Desalination, 238 (2009) 90–97.
  138. M. Boorsma, S. Dost, S. Klinkhamer, J. Schippers, Monitoring and controlling biofouling in an integrated membrane system, Desal. Water Treat., 31 (2011) 347–353.
  139. D.A. Caron, M.-È. Garneau, E. Seubert, M.D. Howard, L. Darjany, A. Schnetzer, I. Cetinić, G. Filteau, P. Lauri, B. Jones, Harmful algae and their potential impacts on desalination operations off southern California, Water Res., 44 (2010) 385–416.
  140. G.S. Ibrahim, A.M. Isloor, R. Farnood, Reverse Osmosis Pretreatment Techniques, Fouling, and Control Strategies, Current Trends and Future Developments on (Bio-) Membranes, Elsevier, Mangalore, 2020,
    pp. 165–186.
  141. S. Lattemann, T. Höpner, Environmental impact and impact assessment of seawater desalination, Desalination, 220 (2008) 1–15.
  142. J. Redondo, I. Lomax, Experiences with the pretreatment of raw water with high fouling potential for reverse osmosis plant using FILMTEC membranes, Desalination, 110 (1997) 167–182.
  143. H.K. Khordagui, A conceptual approach to selection of a control measure for residual chlorine discharge in Kuwait Bay, Environ. Manage., 16 (1992) 309–316.
  144. N. Farhat, E. Loubineaud, E. Prest, J. El-Chakhtoura, C. Salles, S.S. Bucs, J. Trampé, W. Van den Broek, J. Van Agtmaal, M. Van Loosdrecht, Application of monochloramine for wastewater reuse: effect on biostability during transport and biofouling in RO membranes, J. Membr. Sci., 551 (2018) 243–253.
  145. M.K. da Silva, I.C. Tessaro, K. Wada, Investigation of oxidative degradation of polyamide reverse osmosis membranes by monochloramine solutions, J. Membr. Sci., 282 (2006) 375–382.
  146. Z. Yin, T. Wen, Y. Li, A. Li, C. Long, Alleviating reverse osmosis membrane fouling caused by biopolymers using preozonation, J. Membr. Sci., 595 (2020) 117546, doi: 10.1016/j. memsci.2019.117546.
  147. Z. Yin, T. Wen, Y. Li, A. Li, C. Long, Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer: the roles of Ca2+ and Mg2+, Water Res., 171 (2020) 115437, doi:10.1016/j.watres.2019.115437.
  148. C.L. Murray-Gulde, J.E. Heatley, A.L. Schwartzman, J.H. Rodgers Jr., Algicidal effectiveness of clearigate, cutrineplus, and copper sulfate and margins of safety associated with their use, Arch. Environ. Contam. Toxicol., 43 (2002) 19–27.
  149. F.S. Al Ketbi, E.Z. Isnasious, A.M. Al Mahyas, Practical observations on reverse osmosis plants including raw water contamination problems, different intake stations and permeator performance, Desalination, 93 (1993) 259–272.
  150. G.Z. Ramon, T.-V. Nguyen, E.M. Hoek, Osmosis-assisted cleaning of organic-fouled seawater RO membranes, Chem. Eng. J., 218 (2013) 173–182.
  151. A. Dana, S. Hadas, G.Z. Ramon, Potential application of osmotic backwashing to brackish water desalination membranes, Desalination, 468 (2019) 114029, doi: 10.1016/j. desal.2019.05.012.
  152. E. Bar-Zeev, M. Elimelech, Reverse osmosis biofilm dispersal by osmotic back-flushing: cleaning via substratum perforation, Environ. Sci. Technol. Lett., 1 (2014) 162–166.
  153. M. Ando, S. Ishihara, K. Ishii, Spiral Wound Membrane Element, Spiral Wound Membrane Module and Treatment System Employing the Same as Well as Running Method and Washing Method Therefor, EU Patent, EP1174177A3, 2004.
  154. M. Ando, K. Ishii, S. Ishihara, Running Method and Treatment System for Spiral Wound Membrane Element and Spiral Wound Membrane Module, United States Patent, US-0899649, 2001.
  155. K. Spiegler, J. Macleish, Molecular (osmotic and electroosmotic) backwash of cellulose acetate hyperfiltration membranes, J. Membr. Sci., 8 (1981) 173–192.
  156. S. Daly, A. Allen, V. Koutsos, A.J. Semião, Influence of organic fouling layer characteristics and osmotic backwashing conditions on cleaning efficiency of RO membranes, J. Membr. Sci., 616 (2020) 118604.
  157. J.-J. Qin, M.H. Oo, K.A. Kekre, B. Liberman, Development of novel backwash cleaning technique for reverse osmosis in reclamation of secondary effluent, J. Membr. Sci., 346 (2010) 8–14.
  158. A. Sagiv, R. Semiat, Backwash of RO spiral wound membranes, Desalination, 179 (2005) 1–9.
  159. N.Y. Yip, M. Elimelech, Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients, Environ. Sci. Technol., 47 (2013) 12607–12616.
  160. Y.-H. Cai, A.I. Schäfer, Renewable energy powered membrane technology: Impact of solar irradiance fluctuation on direct osmotic backwash, J. Membr. Sci., 598 (2020) 117666.
  161. J. Gilron, E. Korin, Method and System for Increasing Recovery and Preventing Precipitation Fouling in Pressure-Driven Membrane Processes, United States Patent, US9649598B2, 2012.
  162. N. Pomerantz, Y. Ladizhansky, E. Korin, M. Waisman, N. Daltrophe, J. Gilron, Prevention of scaling of reverse osmosis membranes by “zeroing” the elapsed nucleation time. Part I. Calcium sulfate, Ind. Eng. Chem. Res., 45 (2006) 2008–2016.
  163. J. Gilron, M. Waisman, N. Daltrophe, N. Pomerantz, M. Milman, I. Ladizhansky, E. Korin, Prevention of precipitation fouling in NF/RO by reverse flow operation, Desalination, 199 (2006) 29–30.
  164. M. Uchymiak, A.R. Bartman, N. Daltrophe, M. Weissman, J. Gilron, P.D. Christofides, W.J. Kaiser, Y. Cohen, Brackish water reverse osmosis (BWRO) operation in feed flow reversal mode using an ex situ scale observation detector (EXSOD), J. Membr. Sci., 341 (2009) 60–66.
  165. G. Mizrahi, K. Wong, X. Lu, E. Kujundzic, A.R. Greenberg, J. Gilron, Ultrasonic sensor control of flow reversal in RO desalination. Part 2: mitigation of calcium carbonate scaling, J. Membr. Sci., 419 (2012) 9–19.
  166. X. Lu, E. Kujundzic, G. Mizrahi, J. Wang, K. Cobry, M. Peterson, J. Gilron, A.R. Greenberg, Ultrasonic sensor control of flow reversal in RO desalination—Part 1: mitigation of calcium sulfate scaling, J. Membr. Sci., 419 (2012) 20–32.
  167. D. Tang, J. Song, A.W.-K. Law, Application of feed flow reversal for nanofiltration of highly concentrated industrial wastewaters, Desalination, 485 (2020) 114462, doi: 10.1016/j. desal.2020.114462.
  168. O. Söhnel, J. Garside, Precipitation: Basic Principles and Industrial Applications, Butterworth-Heinemann, Oxford, 1992.
  169. S. He, J.E. Oddo, M.B. Tomson, The nucleation kinetics of calcium sulfate dihydrate in NaCl solutions up to 6 m and 90 C, J. Colloid Interface Sci., 162 (1994) 297–303.
  170. F. Alimi, H. Elfil, A. Gadri, Kinetics of the precipitation of calcium sulfate dihydrate in a desalination unit, Desalination, 158 (2003) 9–16.
  171. M.Y. Ashfaq, M.A. Al-Ghouti, D.A. Da’na, H. Qiblawey, N. Zouari, Effect of concentration of calcium and sulfate ions on gypsum scaling of reverse osmosis membrane, mechanistic study, J. Mater. Res. Technol., 9 (2020) 13459–13473.
  172. T. Kennedy, R. Merson, B. McCoy, Improving permeation flux by pulsed reverse osmosis, Chem. Eng. Sci., 29 (1974) 1927–1931.
  173. I. Liberman, B. Liberman, Forward Osmotic and Water Hammer Method of Membrane Cleaning, United States Patent, US10507432B2, 2019.
  174. K. Choon Ng, T. Missimer, G. Amy, Processes and Apparatus for Inhibiting Bio-Fouling, United States Patent, US20120318731A1, 2012.
  175. B. Liberman, L. Eshed, G. Greenberg, Pulse flow RO – the new RO technology for waste and brackish water applications, Desalination, 479 (2020) 114336, doi: 10.1016/j. desal.2020.114336.