References

  1. M. Rasapoor, B. Young, R. Brar, A. Sarmah, W.-Q. Zhuang, S. Baroutian, Recognizing the challenges of anaerobic digestion: critical steps toward improving biogas generation, Fuel, 261 (2020) 116497, doi:10.1016/j.fuel.2019.116497.
  2. A. Kumar, S.R. Samadder, Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: a review, Energy, 197 (2020) 117253, doi:10.1016/j.energy.2020.117253.
  3. Loi n° 13-09 relative aux énergies renouvelables, promulguée par Dahir n° 1-10-16 du 26 Safar 1431 (11 février 2010) publiée au Bulletin officiel n° 5822 du 1er Rabii II 1431 (18 mars 2010).
  4. A. Leidreiter, F. Boselli, 100% énergies renouvelables: renforcer le développement au Maroc (100% renewable energy: streng the ning development in Morocco), World Future Council, 2015.
  5. M. Elazhar, A. Bouchabchoub, F. Elazhar, A. Elmidaoui, M. Taky, Industrial-scale anaerobic digestion of vinasse in Morocco: performances and statistical models, Desal. Water Treat., 240 (2021) 97–105.
  6. S. Paudel, K.Y. Ang, Y.-S. Yoo, G.T. Seo, Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by twostage anaerobic co-digestion of food waste and brown water, Waste. Manage., 61 (2017) 484–493.
  7. M.A. Dareioti, M. Kornaros, Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system, Bioresour. Technol., 167 (2014) 407–415.
  8. M.A. Dareioti, M. Kornaros, Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: effect of hydraulic retention time, Bioresour. Technol., 175 (2015) 553–562.
  9. I. Syaichurrozi, S. Sarto, W.B. Sediawan, M. Hidayat, Mechanistic model of electrocoagulation process for treating vinasse waste: effect of initial pH, J. Environ. Chem. Eng., 8 (2020) 103756, doi:10.1016/j.jece.2020.103756.
  10. Y. Li, Y. Chen, J. Wu, Enhancement of methane production in anaerobic digestion process: a review, Appl. Energy, 240 (2019) 120–137.
  11. J. Jiménez, Y. Guardia-Puebla, O. Romero-Romero, M.E. Cisneros-Ortiz, G. Guerra, J.M. Morgan-Sagastume,
    A. Noyola, Methanogenic activity optimization using the response surface methodology, during the anaerobic co-digestion of agriculture and industrial wastes. Microbial community diversity, Biomass Bioenergy, 71 (2014) 84–97.
  12. J. Kang, S. Kim, B. Moon, Optimization by response surface methodology of lute in recovery from paprika leaves using accelerated solvent extraction, Food Chem., 205 (2016) 140–145.
  13. G. Burcu, J. Stokes, P. Davis, C. Connolly, J. Lawler, Optimisation of anaerobic digestion of pot ale after thermochemical pre-treatment through response surface methodology, Biomass Bioenergy, 144 (2021) 105902, doi: 10.1016/j. biombioe.2020.105902.
  14. T. Belwal, P. Dhyani, I.D. Bhatt, R.S. Rawal, V. Pande, Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM), Food Chem., 207 (2016) 115–124.
  15. G. Khoobbakht, G. Najafi, M. Karimi, A. Akram, Optimization of operating factors and blended levels of diesel, biodiesel and ethanol fuels to minimize exhaust emissions of diesel engine using response surface methodology, Appl. Therm. Eng., 99 (2016) 1006–1017.
  16. Minister for Energy, Mines, Water and the Environment, Responsible for Water, Water Research and Planning Department, Water Quality Division, Water Pollution Service, Preservation of the Quality of Water Resources and Fight Against Pollution: Moroccan Pollution Standards Specific Limits for Municipal Discharge, 2014, pp. 13–15.
  17. M. Pirsaheb, M. Moradi, H. Ghaffari, K. Sharafi, Application of response surface methodology for efficiency analysis of strong non-selective ion exchange resin column (A 400 e) in nitrate removal from groundwater, Int. J. Pharm. Technol., 8 (2016) 11023–11034.
  18. J. Jaafari, K. Yaghmaeian, Response surface methodological approach for optimizing heavy metal biosorption by the bluegreen alga Chroococcus disperses, Desal. Water Treat., 142 (2019) 225–234.
  19. A. Karami, K. Karimyan, R. Davoodi, M. Karimaei, K. Sharafie, S. Rahimi, T. Khosravi, M. Miri, H. Sharafi, A. Azari, Application of response surface methodology for statistical analysis, modeling, and optimization of malachite green removal from aqueous solutions by manganese-modified pumice adsorbent, Desal. Water Treat., 89 (2017) 150–161.
  20. J. Jaafari, K. Yaghmaeian, Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM), Chemosphere, 217 (2019) 447–455.
  21. A. Reungsang, S. Pattra, S. Sittijunda, Optimization of key factors affecting methane production from acidic effluent coming from the sugarcane juice hydrogen fermentation process, Energies, 5 (2012) 4746–4757.
  22. K.N. Niladevi, R.K. Sukumaran, N. Jacob, G.S. Anisha, P. Prema, Optimization of laccase production from a novel strain — Streptomyces psammoticus using response surface methodology, Microbiol. Res., 164 (2009) 105–113.
  23. B.S. Moraes, M. Zaiat, A. Bonomi, Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives, Renewable Sustainable Energy Rev., 44 (2015) 888–903.
  24. T. Rakić, I. Kasagić-Vujanović, M. Jovanović, B. Jančić- Stojanović, D. Ivanović, Comparison of full factorial design, central composite design, and Box–Behnken design in chromatographic method development for the determination of fluconazole and its impurities, Anal. Lett., 47 (2014) 1334–1347.
  25. M. Hatami, M. Jafaryar, D.D. Ganji, M. Gorji-Bandpy, Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques, Int. Commun. Heat Mass Transf., 57 (2014) 254–263.
  26. H. Nam, S. Capareda, Experimental investigation of torrefaction of two agricultural wastes of different composition using RSM (response surface methodology), Energy, 91 (2015) 507–516.
  27. A. Torkian, A. Eqbali, S.J. Hashemian, The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent, Resour. Conserv. Recy., 40 (2003) 1–11.