References

  1. P. Bhatia, M. Nath, Green synthesis of p-NiO/n-ZnO nanocomposites: excellent adsorbent for removal of Congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater, J. Water Process Eng., 33 (2020) 101017, doi: 10.1016/j.jwpe.2019.101017.
  2. S.R. Manippady, A. Singh, B.M. Basavaraja, A.K. Samal, S. Srivastava, M. Saxena, Iron–carbon hybrid magnetic nanosheets for adsorption-removal of organic dyes and 4-nitrophenol from aqueous solution, ACS Appl. Nano Mater., 3 (2020) 1571–1582.
  3. N. Alhokbany, T. Ahama, Ruksana, Mu. Naushad, S.M. Alshehri, AgNPs embedded N-doped highly porous carbon derived from chitosan based hydrogel as catalysts for the reduction of 4-nitrophenol, Compos. Part B, 173 (2019) 106950, doi: 10.1016/j. compositesb.2019.106950.
  4. M. Guzmán, M. Estrada, S. Miridonov, A. Simakov, Synthesis of cerium oxide (IV) hollow nanospheres with tunable structure and their performance in the 4-nitrophenol adsorption, Microporous Mesoporous Mater., 278 (2019) 241–250.
  5. J. Luo, Y. Gao, K. Tan, W. Wei, X. Liu, Preparation of a magnetic molecularly imprinted graphene composite highly adsorbent for 4-nitrophenol in aqueous medium, ACS Sustainable Chem. Eng.,4 (2016) 3316–3326.
  6. P. Cyganowski, D. Jermakowicz-Bartkowiak, A. Lesniewicz, P. Pohl, A. Dzimitrowicz, Highly efficient and convenient nanocomposite catalysts produced using in-situ approach for decomposition of 4-nitrophenol, Colloids Surf., A, 590 (2020) 124452, doi: 10.1016/j.colsurfa.2020.124452.
  7. H.N. Abdelhamid, High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks, J. Environ. Chem. Eng., 9 (2020) 104404, doi: 10.1016/j.jece.2020.104404.
  8. P.T. Dhorabe, D.H. Lataye, R.S. Ingole, Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust, Water Sci. Technol., 73 (2016) 955–966.
  9. A. Kumar, S. Kumar, S. Kumar, D.V. Gupta, Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: equilibrium and kinetics, J. Hazard. Mater., 147 (2007) 155–166.
  10. L.C.A. Oliveira, E. Pereira, I.R. Guimaraes, A. Vallone, M. Pereira, J.P. Mesquita, K. Sapag, Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents, J. Hazard. Mater., 165 (2009) 87–94.
  11. J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions, J. Environ. Chem. Eng., 4 (2016) 266–275.
  12. B. Cardoso, A.S. Mestre, A.P. Carvalho, J. Pires, Activated carbon derived from cork powder waste by KOH activation: preparation, characterization, and VOCs adsorption, Ind. Eng. Chem. Res., 47 (2008) 5841–5846.
  13. A.C. Lua, J. Guo, Preparation and characterization of activated carbons from oil-palm stones for gas-phase adsorption, Colloids Surf., A, 179 (2001) 151–162.
  14. M.M. Karthika, M. Vasuki, Adsorption of Alizarine Red-S dye from aqueous solution by cane sugar bagasse: resolution of isotherm, kinetic and thermodynamics, Int. J. Appl. Eng. Res., 13 (2018) 10260–10267.
  15. P. Ganguly, R. Sarkhel, P. Das, Synthesis of pyrolyzed biochar and its application for dye removal: batch, kinetic and isotherm with linear and non-linear mathematical analysis, Surf. Interfaces, 20 (2020) 100616, doi: 10.1016/j.surfin.2020.100616.
  16. F. Batool, J. Akbar, S. Iqbal, S. Noreen, S.N.A. Bukhari, Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis, Bioinorg. Chem. Appl., 2018 (2018) 3463724, doi: 10.1155/2018/3463724.
  17. S. Akazdam, M. Chafi, W. Yassine, B. Gourich, Removal of acid orange 7 dye from aqueous solution using the exchange resin amberlite FPA-98 as an efficient absorbent: kinetics, isotherms, and thermodynamics study,
    J. Mater. Environ. Sci., 8 (2017) 2993–3012.
  18. C.A. Başar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater., 135 (2006) 232–241.
  19. H. Masood, S. Zafar, H. ur Rehman, M.I. Khan, H.B. Ahmad, A. Naz, W. Hassan, M.H. Lashari, Adsorptive removal of anionic dyes in aqueous binary mixture by anion exchange membrane, Desal. Water Treat., 194 (2020) 248–258.
  20. A.V. Hill, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves,
    J. Physiol., 40 (1910) 4–7.
  21. M. Salimi, Z. Salehi, H. Heidari, F. Vahabzadeh, Production of activated biochar from Luffa cylindrica and its application for adsorption of 4-nitrophenol, J. Environ. Chem. Eng., 9 (2021) 105403, doi:10.1016/j.jece.2021.105403.
  22. T.R. Bastami, M.H. Entezari, Activated carbon from carrot dross combined with magnetite nanoparticles for the efficient removal of p-nitrophenol from aqueous solution, Chem. Eng. J., 210 (2012) 510–519.
  23. M. Ahmaruzzaman, S. Laxmi Gayatri, Batch adsorption of 4-nitrophenol by acid activated jute stick char: equilibrium, kinetic and thermodynamic studies, Chem. Eng. J., 158 (2010) 173–180.
  24. L. Baloo, M.H. Isa, N.B. Sapari, A.H. Jagaba, L.J. Wei, S. Yavari, R. Razali, R. Vasu, Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons, Alexandria Eng. J., 60 (2021) 5611–5629.
  25. S. Mishra, S.S. Yadav, S. Rawat, J. Singh, J.R. Koduru, Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties, J. Environ. Manage., 246 (2019) 362–373.