References
  -  L.L. Cabral, I.C. Pereira, F. Perretto, A. Nagalli, R.C.P. Rizzo-Domingues, F.H. Passig, K.Q. de Carvalho, Adsorption and
    desorption of phosphate onto chemically and thermochemically
    pre-activated red ceramic waste: characteristics, batch studies,
    and mechanisms, J. Environ. Chem. Eng., 9 (2021) 106695,
    doi:10.1016/j.jece.2021.106695. 
-  N. Lemke, A. Murawski, M.I.H. Schmied-Tobies, E. Rucic,
    H.-W. Hoppe, A. Conrad, M. Kolossa-Gehring, Glyphosate and
    aminomethylphosphonic acid (AMPA) in urine of children and
    adolescents in Germany – Human biomonitoring results of the
    German Environmental Survey 2014–2017 (GerES V), Environ.
    Int., 156 (2021) 106769, doi: 10.1016/j.envint.2021.106769. 
-  N. Botten, L.J. Wood, J.R. Werner, Glyphosate remains in
    forest plant tissues for a decade or more, For. Ecol. Manage.,
    493 (2021) 119259, doi: 10.1016/j.foreco.2021.119259. 
-  M. Xie, Z. Liu, Y. Xu, Removal of glyphosate in neutralization
    liquor from the glycine-dimethylphosphit process by
    nanofiltration, J. Hazard. Mater., 181 (2010) 975–980. 
-  J. Shen, J. Huang, H. Ruan, J. Wang, B. Van der Bruggen, Technoeconomic
    analysis of resource recovery of glyphosate liquor by
    membrane technology, Desalination, 342 (2014) 118–125. 
-  Z. Liu, M. Zhu, P. Yu, Y. Xu, X. Zhao, Pretreatment of membrane
    separation of glyphosate mother liquor using a precipitation
    method, Desalination, 313 (2013) 140–144. 
-  H. Wu, Q. Sun, J. Chen, G.-Y. Wang, D. Wang, X.-F. Zeng,
	  J.-X. Wang, Citric acid-assisted ultrasmall CeO2 nanoparticles
    for efficient photocatalytic degradation of glyphosate, Chem.
  Eng. J., 425 (2021) 130640, doi:10.1016/j.cej.2021.130640. 
-  X. Luo, J.-B. Zhang, L. He, X.-J. Yang, P.-Y. Lü, Analysis of the
    performance and mechanism of phosphorus removal in water
    by steel slag, Environ. Sci., 42 (2021) 2324–2333. 
-  X.-x. Wang, M. Wang, Y.-x. Jia, T.-t. Yao, The feasible study
    on the reclamation of the glyphosate neutralization liquor by
    bipolar membrane electrodialysis, Desalination, 300 (2012)
    58–63. 
-  X. Li, L. Huang, H. Fang, M. Chen, Z. Cui, Z. Sun, D. Reible,
    Phosphorus adsorption by sediment considering mineral
    composition and environmental factors, Environ. Sci. Pollut.
    Res., 28 (2021) 17495–17505. 
-  Z. Fan, W. Zeng, Q. Meng, H. Liu, C. Ma, Y. Peng, Achieving
    partial nitrification, enhanced biological phosphorus removal
    and in-situ fermentation (PNPRF) in continuous-flow system
    and mechanism analysis at transcriptional level, Chem. Eng. J.,
    428 (2022) 131098, doi: 10.1016/j.cej.2021.131098. 
-  F.-F. Chen, H.-F. Li, X.-R. Jia, Z.-Y. Wang, X. Liang, Y.-Y. Qin,
    W.-Q. Chen, T.-Q. Ao, Characteristic and model of phosphate
    adsorption by activated carbon electrodes in capacitive
    deionization, Sep. Purif. Technol., 236 (2020) 116285,
    doi: 10.1016/j.seppur.2019.116285. 
-  X. Ma, B. Liu, M. Che, Q. Wu, R. Chen, C. Su, X. Xu, Z. Zeng,
    L. Li, Biomass-based hierarchical porous carbon with ultrahigh
    surface area for super-efficient adsorption and separation of
    acetone and methanol, Sep. Purif. Technol., 269 (2021) 118690,
    doi: 10.1016/j.seppur.2021.118690. 
-  T. Liu, K. Wu, L. Zeng, Removal of phosphorus by a composite
    metal oxide adsorbent derived from manganese ore tailings,
    J. Hazard. Mater., 217–218 (2012) 29–35. 
-  C. Li, Y. Li, Q. Li, J. Duan, J. Hou, Q. Hou, S. Ai, H. Li,
    Y. Yang, Regenerable magnetic aminated 
 lignin/Fe3O4/La(OH)3 adsorbents for the effective removal of phosphate and
    glyphosate, Sci. Total Environ., 788 (2021) 147812, doi: 10.1016/j.
    scitotenv.2021.147812.
-  G. Xiao, Q. Meng, D151 resin preloaded with Fe3+ as a salt
    resistant adsorbent for glyphosate from water in the presence
    16% NaCl, Ecotoxicol. Environ. Saf., 190 (2020) 110140,
  doi: 10.1016/j.ecoenv.2019.110140. 
-  S. Yagi, K. Fukushi, Removal of phosphate from solution
    by adsorption and precipitation of calcium phosphate onto
    monohydrocalcite, J. Colloid Interface Sci., 384 (2012) 128–136. 
-  M. Yang, J. Dai, L. Wang, Y. Li, Y. Song, First principles study
    of structural stability against the distribution of Mg and Al
    atoms and adsorption behaviors of heavy metals of attapulgite,
    Comput. Mater. Sci., 169 (2019) 109106, doi: 10.1016/j.
    commatsci.2019.109106. 
-  H. Wang, X. Wang, J. Ma, P. Xia, J. Zhao, Removal of cadmium(II)
    from aqueous solution: a comparative study of raw attapulgite
    clay and a reusable waste-struvite/attapulgite obtained from
    nutrient-rich wastewater, 
 J. Hazard. Mater., 329 (2017) 66–76.
-  L. Dong, H. Wang, Y. Huang, H. Chen, H. Cheng, L. Liu, L. Xu,
    J. Zha, M. Yu, S. Wang, Y. Duan, Elemental mercury removal
    from coal-fired flue gas using recyclable magnetic Mn-Fe
    based attapulgite sorbent, Chem. Eng. J., 407 (2021) 127182,
    doi: 10.1016/j.cej.2020.127182. 
-  W. Yan, D. Liu, D. Tan, P. Yuan, M. Chen, FT-IR spectroscopy
    study of the structure changes of palygorskite under heating,
    Spectrochim. Acta, Part A, 97 (2012) 1052–1057. 
-  P. Sun, W. Zhang, B. Zou, X. Wang, L. Zhou, Z. Ye, Q. Zhao,
    Efficient adsorption of Cu(II), Pb(II) and Ni(II) from waste
    water by PANI@APTS-magnetic attapulgite composites, Appl.
    Clay Sci., 209 (2021) 106151, doi:10.1016/j.clay.2021.106151. 
-  R. Huang, Q. Lin, Q. Zhong, X. Zhang, X. Wen, H. Luo, Removal
    of Cd(II) and Pb(II) from aqueous solution by modified
    attapulgite clay, Arabian J. Chem., 13 (2020) 4994–5008. 
-  H. Yin, X. Yan, X. Gu, Evaluation of thermally-modified
    calcium-rich attapulgite as a low-cost substrate for rapid
    phosphorus removal in constructed wetlands, Water Res.,
    115 (2017) 329–338. 
-  H. Yin, M. Han, W. Tang, Phosphorus sorption and supply
    from eutrophic lake sediment amended with thermally-treated
    calcium-rich attapulgite and a safety evaluation, Chem. Eng. J.,
    285 (2016) 671–678. 
-  P.R. Christensen, J.L. Bandfield, V.E. Hamilton, D.A. Howard,
    M.D. Lane, J.L. Piatek, S.W. Ruff, W.L. Stefanov, A thermal
    emission spectral library of rock-forming minerals, J. Geophys.
    Res.: Atmos., 105 (2000) 9735–9739. 
-  A. Middea, T.L.A.P. Fernandes, R. Neumann, O. da F.M. Gomes,
    L.S. Spinelli, Evaluation of Fe(III) adsorption onto palygorskite
    surfaces, Appl. Surf. Sci., 282 (2013) 253–258. 
-  W. Zhang, L. Qian, Y. Chen, D. Ouyang, L. Han, X. Shang,
    J. Li, M. Gu, M. Chen, Nanoscale zero-valent iron supported
    by attapulgite produced at different acid modification:
    synthesis mechanism and the role of silicon on Cr(VI)
    removal, Chemosphere, 267 (2021) 129183, doi: 10.1016/j.
    chemosphere.2020.129183. 
-  H. Yin, P. Yang, M. Kong, W. Li, Use of lanthanum/aluminum
    co-modified granulated attapulgite clay as a novel phosphorus
    (P) sorbent to immobilize P and stabilize surface sediment in
    shallow eutrophic lakes, Chem. Eng. J., 385 (2020) 123395,
    doi: 10.1016/j.cej.2019.123395. 
-  C. Jia, Y. Mi, Z. Liu, W. Zhou, H. Gao, S. Zhang, R. Lu, Attapulgite
    modified with covalent organic frameworks as the sorbent
    in dispersive solid phase extraction for the determination of
    pyrethroids in environmental water samples, Microchem. J.,
    153 (2020) 104522, doi: 10.1016/j.microc.2019.104522. 
-  G.B. Douglas, D.P. Hamilton, M.S. Robb, G. Pan, B.M. Spears,
    M. Lurling, Guiding principles for the development and
    application of solid-phase phosphorus adsorbents for freshwater
    ecosystems, Aquat. Ecol., 50 (2016) 385–405. 
-  E.S. Kazak, A.V. Kazak, Experimental features of cation exchange
    capacity determination in organic-rich mudstones, J. Nat. Gas
    Sci. Eng., 83 (2020) 103456, doi: 10.1016/j.jngse.2020.103456. 
-  H. Ji, X. Song, C. He, C. Tang, L. Xiong, W. Zhao, C. Zhao,
    Root-soil structure inspired hydrogel microspheres with high
    dimensional stability and anion-exchange capacity, J. Colloid
    Interface Sci., 532 (2018) 680–688. 
-  D. Balarak, G. McKay, Utilization of MWCNTs/Al2O3 as
    adsorbent for ciprofloxacin removal: equilibrium, kinetics and
    thermodynamic studies, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 56 (2021) 324–333. 
-  D. Balarak, M. Zafariyan, C.A. Igwegbe, K.K. Onyechi,
    J.O. Ighalo, Adsorption of Acid blue 92 dye from aqueous
    solutions by single-walled carbon nanotubes: isothermal,
    kinetic, and thermodynamic studies, Environ. Process.,
    8 (2021) 869–888. 
-  T.J. Al-Musawi, N. Mengelizadeh, O. Al Rawi, D. Balarak,
    Capacity and modeling of Acid blue 113 dye adsorption onto
    chitosan magnetized by Fe2O3 nanoparticles, J. Polym. Environ.,
    30 (2022) 344–359. 
-  S. Mor, K. Chhoden, P. Negi, K. Ravindra, Utilization of nanoalumina
    and activated charcoal for phosphate removal from
    wastewater, Environ. Nanotechnol. Monit. Manage., 7 (2017)
    15–23. 
-  Q. Guan, L. Deng, D. Zhang, P. Ning, Z. Kong, L. He, Preparation
    of tetraethylenepentamine‐functionalized 4A zeolite for
    effective removal of phosphate in water, Appl. Organomet.
    Chem., 34 (2020) 5861, doi:10.1002/aoc.5861. 
-  M. Zamparas, A. Gianni, P. Stathi, Y. Deligiannakis, I. Zacharias,
    Removal of phosphate from natural waters using innovative
    modified bentonites, Appl. Clay Sci., 62–63 (2012) 101–106. 
-  S. Jiang, J. Wang, S. Qiao, J. Zhou, Phosphate recovery from
    aqueous solution through adsorption by magnesium modified
    multi-walled carbon nanotubes, Sci. Total Environ., 796 (2021)
    148907, doi: 10.1016/j.scitotenv.2021.148907. 
-  H. Yin, M. Kong, Simultaneous removal of ammonium and
    phosphate from eutrophic waters using natural calcium-rich
    attapulgite-based versatile adsorbent, Desalination, 351 (2014)
    128–137. 
-  R.-y. Zhou, J.-x. Yu, H.-x. Li, R.-a. Chi, Removal of phosphate
    from aqueous solution by ferrihydrite/bagasse composite
    prepared through in situ precipitation method, Colloids
    Surf., A, 603 (2020) 125144, doi:10.1016/j.colsurfa.2020.125144. 
-  L. Zhang, Q. Zhou, J. Liu, N. Chang, L. Wan, J. Chen, Phosphate
    adsorption on lanthanum hydroxide-doped activated carbon
    fiber, Chem. Eng. J., 185–186 (2012) 160–167. 
-  H. Xu, W. Zeng, S. Li, B. Wang, Z. Jia, Y. Peng, Hydrated
    zirconia-loaded resin for adsorptive removal of phosphate from
    wastewater, Colloids Surf., A, 600 (2020) 124909, doi: 10.1016/j.
    colsurfa.2020.124909. 
-  Y. Wei, X. Liang, H. Wu, J. Cen, Y. Ji, Efficient phosphate
    removal by dendrite-like halloysite-zinc oxide nanocomposites
    prepared via noncovalent hybridization, Appl. Clay Sci.,
    213 (2021) 106232, doi:10.1016/j.clay.2021.106232. 
-  Y. Wang, Z. Gao, Y. Shang, Z. Qi, W. Zhao, Y. Peng, Proportional
    modulation of zinc-based MOF/carbon nanotube hybrids for
    simultaneous removal of phosphate and emerging organic
    contaminants with high efficiency, Chem. Eng. J., 417 (2021)
    128063, doi: 10.1016/j.cej.2020.128063. 
-  Y. Tang, E. Zong, H. Wan, Z. Xu, S. Zheng, D. Zhu, Zirconia
    functionalized SBA-15 as effective adsorbent for phosphate
    removal, Microporous Mesoporous Mater., 155 (2012) 192–200. 
-  Y. Song, X. Song, Q. Sun, S. Wang, T. Jiao, Q. Peng, Q. Zhang,
    Efficient and sustainable phosphate removal from water
    by small-sized Al(OH)3 nanocrystals confined in discarded
    Artemia Cyst-shell: ultrahigh sorption capacity and rapid
    sequestration, Sci. Total Environ., 803 (2022) 150087,
    doi:10.1016/j.scitotenv.2021.150087.