References

  1. F.T. Jones, A broad view of arsenic, Poult. Sci., 86 (2007) 2–14.
  2. K.P. Mangalgiri, A. Adak, L. Blaney, Organoarsenicals in poultry litter: detection, fate, and toxicity, Environ. Int., 75 (2015) 68–80.
  3. X. Liu, W. Zhang, Y. Hu, H. Cheng, Extraction and detection of organoarsenic feed additives and common arsenic species in environmental matrices by HPLC–ICP-MS, Microchem. J., 108 (2013) 38–45.
  4. A. Sarkar, B. Paul, The global menace of arsenic and its conventional remediation – a critical review, Chemosphere, 158 (2016) 37–49.
  5. X.D. Xie, Y.N. Hu, H.F. Cheng, Mechanism, kinetics, and pathways of self-sensitized sunlight photodegradation of phenylarsonic compounds, Water Res., 96 (2016) 136–147.
  6. B.E. Hettick, J.E. Canas-Carrell, A.D. French, D.M. Klein, Arsenic: a review of the element’s toxicity, plant interactions, and potential methods of remediation, J. Agric. Food Chem., 63 (2015) 7097–7107.
  7. I. Cortinas, J.A. Field, M. Kopplin, J.R. Garbarino, A.J. Gandolfi, R. Sierra-Alvarez, Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids, Environ. Sci. Technol., 40 (2006) 2951–2957.
  8. K.C. Makris, M. Quazi, P. Punamiya, D. Sarkar, R. Datta, Fate of arsenic in swine waste from concentrated animal feeding operations, J. Environ. Qual., 37 (2008) 1626–1633.
  9. K.E. Nachman, P.A. Baron, G. Raber, K.A. Francesconi, A. Navas-Acien, D.C. Love, Roxarsone, inorganic arsenic, and other arsenic species in chicken: a US-based market basket sample, Environ. Health Perspect., 121 (2013) 818–824.
  10. X. Xie, H. Cheng, Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals, Sci. Total Environ., 757 (2021) 143765, doi: 10.1016/j.scitotenv.2020.143765.
  11. A. Adamescu, W. Mitchell, I.P. Hamilton, H.A. Al-Abadleh, Insights into the surface complexation of dimethylarsinic acid on iron (oxyhydr)oxides from ATR-FTIR studies and quantum chemical calculations, Environ. Sci. Technol., 44 (2010) 7802–7807.
  12. M.J. Jimenez-Cedillo, M.T. Olguin, C. Fall, A. Colin, Adsorption capacity of iron- or iron-manganese-modified zeolite-rich tuffs for As(III) and As(V) water pollutants, Appl. Clay Sci., 54 (2011) 206–216.
  13. J.H. Kwon, L.D. Wilson, R. Sammynaiken, Sorptive uptake studies of an aryl-arsenical with iron oxide composites on an activated carbon support, Materials, 7 (2014) 1880–1898.
  14. N. Chen, Y.C. Wan, G.M. Zhan, X.B. Wang, M.Q. Li, L.Z. Zhang, Simulated solar light driven roxarsone degradation and arsenic immobilization with hematite and oxalate, Chem. Eng. J., 384 (2020) 123254, doi:10.1016/j.cej.2019.123254.
  15. L.Y. Wang, S.W. Wang, W.R. Chen, Roxarsone desorption from the surface of goethite by competitive anions, phosphate and hydroxide ions: significance of the presence of metal ions, Chemosphere, 152 (2016) 423–430.
  16. S.Y. Cao, X. Zhang, X.P. Huang, S.H. Wan, X.Z. An, F.L. Jia, L.Z. Zhang, Insights into the facet-dependent adsorption of phenylarsonic acid on hematite nanocrystals, Environ. Sci. Nano, 6 (2019) 3280–3291.
  17. W.R. Chen, C.H. Huang, Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides, J. Hazard. Mater., 227 (2012) 378–385.
  18. A. Suda, T. Makino, Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review, Geoderma, 270 (2016) 68–75.
  19. D. Ma, J. Wu, P. Yang, M.Q. Zhu, Coupled manganese redox cycling and organic carbon degradation on mineral surfaces, Environ. Sci. Technol., 54 (2020) 8801–8810.
  20. S. Lan, X.M. Wang, Q.J. Xiang, H. Yin, W.F. Tan, G.H. Qiu, F. Liu, J. Zhang, X.H. Feng, Mechanisms of Mn(II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr)oxides, Geochim. Cosmochim. Acta, 211 (2017) 79–96.
  21. A.S. Madison, B.M. Tebo, A. Mucci, B. Sundby, G.W. Luther, Abundant porewater Mn(III) is a major component of the sedimentary redox system, Science, 341 (2013) 875–878.
  22. B. Chiswell, K.R. O’Halloran, Comparison of three colorimetric methods for the determination of manganese in freshwaters, Talanta, 38 (1991) 641–647.
  23. R.R. Karri, J.N. Sahu, N.S. Jayakumar, Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: error analysis of linear and non-linear methods,
    J. Taiwan Inst. Chem. Eng., 80 (2017) 472–487.
  24. Q. Hu, Y. Liu, X. Gu, Y. Zhao, Adsorption behavior and mechanism of different arsenic species on mesoporous MnFe2O4 magnetic nanoparticles, Chemosphere, 181 (2017) 328–336.
  25. Y. Zhu, X. Wang, J. Zhang, L. Ding, J. Li, H. Zheng, C. Zhao, Generation of active Mn(III)aq by a novel heterogeneous electro-permanganate process with manganese(II) as promoter and stabilizer, Environ. Sci. Technol., 53 (2019) 9063–9072.
  26. M. Ding, B. de Jong, S.J. Roosendaal, A. Vredenberg, XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide, Geochim. Cosmochim. Acta, 64 (2000) 1209–1219.
  27. B. Li, D. Wei, Z. Li, Y. Zhou, Y. Li, C. Huang, J. Long, H. Huang, B. Tie, M. Lei, Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: adsorption and redox transformation, J. Hazard. Mater., 389 (2020) 122091, doi:10.1016/j.jhazmat.2020.122091.
  28. C. Chen, L. Liu, Y. Li, L. Zhou, Y. Lan, Efficient degradation of roxarsone and simultaneous in-situ adsorption of secondary inorganic arsenic by a combination of Co3O4-Y2O3 and peroxymonosulfate, J. Hazard. Mater., 407 (2021) 124559, doi: 10.1016/j.jhazmat.2020.124559.
  29. M. Chabot, T. Hoang, H.A. Al-Abadleh, ATR-FTIR studies on the nature of surface complexes and desorption efficiency of p-arsanilic acid on iron (oxyhydr)oxides, Environ. Sci. Technol., 43 (2009) 3142–3147.
  30. W. Zhao, H. Cheng, S. Tao, Structure-reactivity relationships in the adsorption and degradation of substituted phenylarsonic acids on birnessite (δ-MnO2), Environ. Sci. Technol., 54 (2020) 1475–1483.
  31. C.Ó. Nualláin, S.Ó. Cinnéide, The thermodynamic ionization constants of aromatic arsonic acids, J. Inorg. Nucl. Chem., 35 (1973) 2871–2881.
  32. Q. Liu, X. Lu, H. Peng, A. Popowich, J. Tao, J.S. Uppal, X. Yan, D. Boe, X.C. Le, Speciation of arsenic – a review of phenylarsenicals and related arsenic metabolites, TrAC, Trends Anal. Chem., 104 (2018) 171–182.