References
  -  Q. Du, S. Zhang, J. Song, Y. Zhao, F. Yang, Activation of porous
    magnetized biochar by artificial humic acid for effective
    removal of lead ions, J. Hazard. Mater., 389 (2020) 122115, doi:
    10.1016/j.jhazmat.2020.122115. 
-  S.C.B. Myneni, J.T. Brown, G.A. Martinez, W. Meyer-Ilse,
    Imaging of humic substance macromolecular structures in
    water and soils, Science, 286 (1999) 1335–1337. 
-  P. Herzsprung, W. von Tümpling, N. Hertkorn, M. Harir,
    O. Büttner, J. Bravidor, K. Friese, P. Schmitt-Kopplin, Variations
    of DOM quality in inflows of a drinking water reservoir:
    linking of van krevelen diagrams with EEMF spectra by rank
    correlation, Environ. Sci. Technol., 46 (2012) 5511–5518. 
-  Y. Zhao, D. Lu, C. Xu, J. Zhong, M. Chen, S. Xu, Y. Cao, Q. Zhao,
    M. Yang, J. Ma, Synergistic oxidation - filtration process analysis
	  of catalytic CuFe2O4 - tailored ceramic membrane filtration
    via peroxymonosulfate activation for humic acid treatment,
  Water Res., 171 (2020) 115387, doi: 10.1016/j.watres.2019.115387. 
-  Y. Xia, Y.L. Lin, B. Xu, C.Y. Hu, Z.C. Gao, W.H. Chu, N.Y. Gao,
    Iodinated trihalomethane formation during chloramination of
    iodate-containing waters in the presence of zero valent iron,
    Water Res., 124 (2017) 219–226. 
-  P.D. Peeva, A.E. Palupi, M. Ulbricht, Ultrafiltration of humic
    acid solutions through unmodified and surface functionalized
    low-fouling polyethersulfone membranes – effects of feed
    properties, molecular weight cut-off and membrane chemistry
    on fouling behavior and cleanability, Sep. Purif. Technol.,
    81 (2011) 124–133. 
-  Y. Ai, C. Zhao, L. Sun, X. Wang, L. Liang, Coagulation
    mechanisms of humic acid in metal ions solution under
    different pH conditions: a molecular dynamics simulation,
    Sci. Total Environ., 702 (2020) 135072, doi:10.1016/j.
    scitotenv.2019.135072. 
-  H. Yin, Q. Guo, C. Lei, W. Chen, B. Huang, Electrochemicaldriven
    carbocatalysis as highly efficient advanced oxidation
    processes for simultaneous removal of humic acid and Cr(VI),
    Chem. Eng. J., 396 (2020) 125156, doi: 10.1016/j.cej.2020.125156. 
-  Z. Ren, N. Graham, Treatment of humic acid in drinking water
    by combining potassium manganate (Mn(VI)), ferrous sulfate,
    and magnetic ion exchange, Environ. Eng. Sci., 32 (2015)
    175–178. 
-  L. Xie, Q. Lu, X. Mao, J. Wang, L. Han, J. Hu, Q. Lu, Y. Wang,
    H. Zeng, Probing the intermolecular interaction mechanisms
    between humic acid and different substrates with implications
    for its adsorption and removal in water treatment, Water
    Res., 176 (2020) 115766, doi: 10.1016/j.watres.2020.115766. 
-  J. Lin, Y. Zhan, Adsorption of humic acid from aqueous solution
    onto unmodified and surfactant-modified chitosan/zeolite
    composites, Chem. Eng. J., 200–202 (2012) 202–213. 
-  Y. Zhi, J. Liu, Adsorption of perfluoroalkyl acids by
    carbonaceous adsorbents: effect of carbon surface chemistry,
    Environ. Pollut., 202 (2015) 168–176. 
-  Y. Zhi, J. Liu, Surface modification of activated carbon for
    enhanced adsorption of perfluoroalkyl acids from aqueous
    solutions, Chemosphere, 144 (2016) 1224–1232. 
-  Y. Zhi, D.F. Call, K.D. Grieger, O.W. Duckworth, J.L. Jones,
    D.R.U. Knappe, Influence of natural organic matter and pH on
    phosphate removal by and filterable lanthanum release from
    lanthanum-modified bentonite, Water Res., 202 (2021) 117399,
    doi: 10.1016/j.watres.2021.117399. 
-  B. Li, L. Zhang, W. Yin, S. Lv, P. Li, X. Zheng, J. Wu, Effective
    immobilization of hexavalent chromium from drinking water
    by nano-FeOOH coating activated carbon: adsorption and
    reduction, J. Environ. Manage., 277 (2021) 111386, doi: 10.1016/j.
    jenvman.2020.111386. 
-  G. Zhang, T. Wu, Y. Li, X. Huang, Y. Wang, G. Wang, Sorption
    of humic acid to organo layered double hydroxides in
    aqueous solution, Chem. Eng. J., 191 (2012) 306–313. 
-  F. Yu, Y. Sun, M. Yang, J. Ma, Adsorption mechanism and
    effect of moisture contents on ciprofloxacin removal by threedimensional
    porous graphene hydrogel, J. Hazard. Mater.,
    374 (2019) 195–202. 
-  J. He, A. Cui, F. Ni, S. Deng, F. Shen, G. Yang, A novel 3D
    yttrium based-graphene oxide-sodium alginate hydrogel
    for remarkable adsorption of fluoride from water, J. Colloid
    Interface Sci., 531 (2018) 37–46. 
-  Q. Fang, Y. Shen, B. Chen, Synthesis, decoration and properties
    of three-dimensional graphene-based macrostructures: a
    review, Chem. Eng. J., 264 (2015) 753–771. 
-  Y. Xu, Z. Lin, X. Zhong, B. Papandrea, Y. Huang, X. Duan,
    Solvated graphene frameworks as high-performance anodes
    for lithium-ion batteries, Angew. Chem. Int. Ed., 54 (2015)
    5345–5350. 
-  F. Li, X. Wang, T. Yuan, R. Sun, A lignosulfonate-modified
    graphene hydrogel with ultrahigh adsorption capacity for
    Pb(II) removal, J. Mater. Chem. A, 4 (2016) 11888–11896. 
-  D. Shan, S. Deng, C. Jiang, Y. Chen, B. Wang, Y. Wang, J. Huang,
    G. Yu, M.R. Wiesner, Hydrophilic and strengthened 3D reduced
    graphene oxide/nano-Fe3O4 hybrid hydrogel for enhanced
    adsorption and catalytic oxidation of typical pharmaceuticals,
  Environ. Sci. Nano, 5 (2018) 1650–1660. 
-  Y.T. Zhuang, X. Zhang, D.H. Wang, Y.L. Yu, J.H. Wang, Threedimensional
    molybdenum disulfide/graphene hydrogel with
    tunable heterointerfaces for high selective Hg(II) scavenging,
    J. Colloid Interface Sci., 514 (2018) 715–722. 
-  J. Bai, J. Chu, X. Yin, J. Wang, W. Tian, Q. Huang, Z. Jia, X. Wu,
    H. Guo, Z. Qin, Synthesis of amidoximated polyacrylonitrile
    nanoparticle/graphene composite hydrogel for selective
    uranium sorption from saline lake brine, Chem. Eng. J.,
    391 (2020) 123553, doi: 10.1016/j.cej.2019.123553. 
-  S. Kabiri, D.N.H. Tran, T. Altalhi, D. Losic, Outstanding
    adsorption performance of graphene-carbon nanotube aerogels
    for continuous oil removal, Carbon N. Y., 80 (2014) 523–533. 
-  Y. Shen, X. Zhu, L. Zhu, B. Chen, Synergistic effects of 2D
    graphene oxide nanosheets and 1D carbon nanotubes in the
    constructed 3D carbon aerogel for high performance pollutant
    removal, Chem. Eng. J., 314 (2017) 336–346. 
-  M. Terrones, Carbon nanotubes: synthesis and properties,
    electronic devices and other emerging applications, Int. Mater.
    Rev., 49 (2004) 325–377. 
-  O.G. Apul, T. Karanfil, Adsorption of synthetic organic
    contaminants by carbon nanotubes: a critical review, Water
    Res., 68 (2015) 34–55. 
-  S. Tourani, A.M. Rashidi, A.A. Safekordi, H.R. Aghabozorg,
    F. Khorasheh, Synthesis of reduced graphene oxide-carbon
    nanotubes (rGO-CNT) composite and its use as a novel catalyst
    support for hydro-purification of crude terephthalic acid, Ind.
    Eng. Chem. Res., 54 (2015) 7591–7603. 
-  J. Cao, Y. Wang, C. Chen, F. Yu, J. Ma, A comparison of graphene
    hydrogels modified with 
 single-walled/multi-walled carbon
    nanotubes as electrode materials for capacitive deionization,
    J. Colloid Interface Sci., 518 (2018) 69–75.
-  M. Thommes, Physical adsorption characterization of
    nanoporous materials, Chemie-Ingenieur-Technik, 82 (2010)
    1059–1073. 
-  A.M. Putz, A. Len, C. Ianăşi, C. Savii, L. Almásy, Ultrasonic
    preparation of mesoporous silica using pyridinium ionic liquid,
    Korean J. Chem. Eng., 33 (2016) 749–754. 
-  Q. Tao, Z. Xu, J. Wang, F. Liu, H. Wan, S. Zheng, Adsorption of
    humic acid to aminopropyl functionalized 
 SBA-15, Microporous
    Mesoporous Mater., 131 (2010) 177–185.
-  J. Wang, Y. Zhou, A. Li, L. Xu, Adsorption of humic acid by
    bi-functional resin JN-10 and the effect 
 of alkali-earth metal ions
    on the adsorption, J. Hazard. Mater., 176 (2010) 1018–1026.
-  J. Wang, X. Han, H. Ma, Y. Ji, L. Bi, Adsorptive removal of
    humic acid from aqueous solution on polyaniline/attapulgite
    composite, Chem. Eng. J., 173 (2011) 171–177. 
-  L. Jiang, Y. Li, Y. Shao, Y. Zhang, R. Han, S. Li, W. Wei, Enhanced
    removal of humic acid from aqueous solution by novel
    stabilized nano-amorphous calcium phosphate: behaviors and
    mechanisms, Appl. Surf. Sci., 427 (2018) 965–975. 
-  Q. Li, J. Wu, M. Hua, G. Zhang, W. Li, C. Shuang, A. Li,
    Preparation of permanent magnetic resin crosslinking by
    diallyl itaconate and its adsorptive and anti-fouling behaviors
    for humic acid removal, Sci. Rep., 7 (2017) 1–11. 
-  S. Li, M. He, Z. Li, D. Li, Z. Pan, Removal of humic acid from
    aqueous solution by magnetic multi-walled carbon nanotubes
    decorated with calcium, J. Mol. Liq., 230 (2017) 520–528. 
-  J. Zhang, J.L. Gong, G.M. Zenga, X.M. Ou, Y. Jiang, Y.N. Chang,
    M. Guo, C. Zhang, H.Y. Liu, Simultaneous removal of humic
    acid/fulvic acid and lead from landfill leachate using magnetic
    graphene oxide, Appl. Surf. Sci., 370 (2016) 335–350. 
-  L. Wang, C. Han, M.N. Nadagouda, D.D. Dionysiou, An
    innovative zinc oxide-coated zeolite adsorbent for removal of
    humic acid, J. Hazard. Mater., 313 (2016) 283–290. 
-  S. Maghsoodloo, B. Noroozi, A.K. Haghi, G.A. Sorial,
    Consequence of chitosan treating on the adsorption of humic
    acid by granular activated carbon, J. Hazard. Mater., 191 (2011)
    380–387. 
-  K. Yang, J.T. Fox, Adsorption of humic acid by acid-modified
    granular activated carbon and powder activated carbon,
    J. Environ. Eng., 144 (2018) 04018104, doi: 10.1061/(asce)
    ee.1943-7870.0001390. 
-  T. Zhou, X. Zhao, S. Wu, L. Su, Y. Zhao, Efficient capture
    of aqueous humic acid using a functionalized stereoscopic
    porous activated carbon based on poly(acrylic acid)/food-waste
    hydrogel, J. Environ. Sci. (China), 77 (2019) 104–114. 
-  S.P. Moussavi, M.H. Ehrampoush, A.H. Mahvi, M. Ahmadian,
    S. Rahimi, Adsorption of humic acid from aqueous solution
    on single-walled carbon nanotubes, Asian J. Chem., 25 (2013)
    5319–5324. 
-  T. Hartono, S. Wang, Q. Ma, Z. Zhu, Layer structured graphite
    oxide as a novel adsorbent for humic acid removal from
    aqueous solution, J. Colloid Interface Sci., 333 (2009) 114–119. 
-  X. Qin, F. Liu, G. Wang, G. Huang, Adsorption of humic acid
    from aqueous solution by hematite: effects of pH and ionic
    strength, Environ. Earth Sci., 73 (2015) 4011–4017. 
-  L. Weng, W.H. Van Riemsdijk, L.K. Koopal, T. Hiemstra,
    Adsorption of humic substances on goethite: comparison
    between humic acids and fulvic acids, Environ. Sci. Technol.,
    40 (2006) 7494–7500. 
-  Z. Liu, S. Zhou, Removal of humic acid from aqueous solution
    using polyacrylamide/chitosan semi-IPN hydrogel, Water Sci.
    Technol., 2017 (2018) 16–26. 
-  M.A. Zulfikar, S. Afrita, D. Wahyuningrum, M. Ledyastuti,
    Preparation of Fe3O4-chitosan hybrid nano-particles used for
    humic acid adsorption, Environ. Nanotechnol. Monit. Manage.,
    6 (2016) 64–75. 
-  S.G. Wang, X.F. Sun, X.W. Liu, W.X. Gong, B.Y. Gao, N. Bao,
    Chitosan hydrogel beads for fulvic acid adsorption: behaviors
    and mechanisms, Chem. Eng. J., 142 (2008) 239–247. 
-  S. Wang, T. Terdkiatburana, M.O. Tadé, Adsorption of Cu(II),
    Pb(II) and humic acid on natural zeolite tuff in single and
    binary systems, Sep. Purif. Technol., 62 (2008) 64–70. 
-  J.A. Brant, A.E. Childress, Assessing short-range membranecolloid
    interactions using surface energetics, 
 J. Membr. Sci., 203
    (2002) 257–273.
-  Y. Liu, L. Shen, H. Lin, W. Yu, Y. Xu, R. Li, T. Sun, Y. He,
    A novel strategy based on magnetic field assisted preparation
    of magnetic and photocatalytic membranes with improved
    performance, J. Membr. Sci., 612 (2020) 118378, doi: 10.1016/j.
    memsci.2020.118378. 
-  J. Ma, M. Yang, F. Yu, J. Zheng, Water-enhanced removal of
    ciprofloxacin from water by porous graphene hydrogel, Sci.
    Rep., 5 (2015) 1–10.