References
   -  L.F. Stadlmair, T. Letzel, J.E. Drewes, J. Grassmann, Enzymes in
    removal of pharmaceuticals from wastewater: 
 a critical review
    of challenges, applications and screening methods for their
    selection, Chemosphere, 205 (2018) 649–661.
-  Z. Li, Z. Ma, T.J. van der Kuijp, Z. Yuan, L. Huang, A review of
    soil heavy metal pollution from mines in China: pollution and
    health risk assessment, Sci. Total Environ., 468 (2014) 843–853. 
-  T. Rasheed, M. Bilal, F. Nabeel, M. Adeel, H.M. Iqbal,
    Environmentally-related contaminants of high concern:
    potential sources and analytical modalities for detection,
    quantification, and treatment, Environ. Int., 122 (2019) 52–66. 
-  L. Gao, Y. Shi, .W. Li, H. Niu, J. Liu, Y. Cai, Occurrence of
    antibiotics in eight sewage treatment plants in Beijing, China,
    Chemosphere, 86 (2012) 665–671. 
-  K.F. Kong, L. Schneper, K. Mathee, Beta‐lactam antibiotics: from
    antibiosis to resistance and bacteriology. APMIS, 118 (2010) 1–36. 
-  D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, Y. Liu,
    Q. Wei, D. Wei, A critical review on antibiotics and hormones
    in swine wastewater: water pollution problems and control
    approaches, J. Hazard. Mater., 387 (2020) 121682, doi: 10.1016/j.
    jhazmat.2019.121682. 
-  U. Bornscheuer, K. Buchholz, J. Seibel, Enzymatic degradation of
    (ligno) cellulose, Angew. Chem. Int. Ed., 53 (2014) 10876–10893. 
-  R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis:
    why, what and how, Chem. Soc. Rev., 42 (2013)
    6223–6235. 
-  U. Guzik, K. Hupert-Kocurek, D. Wojcieszyńska, Immobilization
    as a strategy for improving enzyme properties-application to
    oxidoreductases, Molecules, 19 (2014) 8995–9018. 
-  N.I. Abd Halin, M.F. Rashid Al-Khatib, H.M. Salleh, M.M. Nasef,
    Immobilization of Candida rugosa lipase on aminated polyvinyl
    benzyl chloride-grafted Nylon-6 microfibers, Bull. Chem.,
    14 (2019) 369–379. 
-  Ö.B. Acikara, G.S. Çitoğlu, S. Özbilgin, B. Ergene, Affinity
    chromatography and importance in drug discovery, Column
    Chromatography, InTech, 2013. 
-  P.-E. Gustavsson, P.-O. Larsson, Support Materials for Affinity
    Chromatography, Handbook of Affinity Chromatography,
    2006, pp. 16–32. 
-  P. Ball, The clinical development and launch of amoxicillin/clavulanate for the treatment of a range of community-acquired
    infections, Int. J. Antimicrob. Agents, 30 (2007) 113–117. 
-  P. Vella, M. Miraula, E. Phelan, E.W. Leung, F. Ely,
    D.L. Ollis, R.P. McGeary, G. Schenk, N. Mitić, Identification
    and characterization of an unusual metallo-β-lactamase from
    Serratia proteamaculans, J. Biol. Inorg. Chem., 18 (2013) 855–863. 
-  M. Sabet, Z. Tarazi, D.C. Griffith, In vivo activity of QPX7728,
    an ultrabroad-spectrum beta-lactamase inhibitor, in
    combination with beta-lactams against carbapenem-resistant
    Klebsiella pneumonia, Antimicrob. Agents Chemother., 64 (2020)
    e01267–20. 
-  G.G. Zhanel, C.D. Lawson, H. Adam, F. Schweizer, S. Zelenitsky,
    P.R.S. Lagacé-Wiens, A. Denisuik, E. Rubinstein, A.S. Gin,
    D.J. Hoban, J.P. Lynch 3rd, J.A. Karlowsky, Ceftazidimeavibactam:
    a novel cephalosporin/β-lactamase inhibitor
    combination, Drugs, 73 (2013) 159–177. 
-  O. Lomovskaya, R. Tsivkovski, K. Nelson, D. Rubio-Aparicio,
    D. Sun, M. Totrov, M.N. Dudley, Spectrum 
 of beta-lactamase
    inhibition by the cyclic boronate QPX7728, an ultrabroadspectrum
    beta-lactamase inhibitor of serine and metallo-betalactamases:
    enhancement of activity of multiple antibiotics
    against isogenic strains expressing single beta-lactamases,
    Antimicrob. Agents Chemother., 64 (2020) e00212–20.
-  X. Gao, X. Fan, X. Chen, Z. Ge, Immobilized β-lactamase on
	  Fe3O4 magnetic nanoparticles for degradation 
 of β-lactam
  antibiotics in wastewater, Int. J. Environ. Sci. Technol., 15 (2018)
  2203–2212.
-  L. Yang, D. Hu, H. Liu, X. Wang, Y. Liu, Q. Xia, S. Deng,
    Y. Hao, Y. Jin, M. Xie, Biodegradation pathway of penicillins
    by β-lactamase encapsulated in metal-organic frameworks,
    J. Hazard. Mater., 414 (2021) 125549, doi: 10.1016/j.
    jhazmat.2021.125549. 
-  O.K. Arjomandi, M. Kavoosi, H. Adibi, Synthesis and
    investigation of inhibitory activities of imidazole derivatives
    against the metallo-β-lactamase IMP-1, Bioorg. Chem., 92 (2019)
    103277, doi:10.1016/j.bioorg.2019.103277. 
-  M.M. Bradford, A rapid and sensitive method for the
    quantitation of microgram quantities of protein utilizing the
    principle of protein-dye binding, Anal. Biochem., 72 (1976)
    248–254. 
-  F. Karami, M. Ghorbani, A.S. Mahoonak, R. Khodarahmi, Fast,
    inexpensive purification of β-glucosidase from Aspergillus
    niger and improved catalytic/physicochemical properties upon
    the enzyme immobilization: possible broad prospects for
    industrial applications, LWT, 118 (2020) 108770, 
 doi: 10.1016/j.
    lwt.2019.108770.
-  N. Laraki, N. Franceschini, G.M. Rossolini, P. Santucci,
    C. Meunier, E. de Pauw, G. Amicosante, J.M. Frère, 
 M. Galleni,
    Biochemical characterization of the Pseudomonas aeruginosa
    101/1477 metallo-β-lactamase
 IMP-1 produced by Escherichia
    coli, Antimicrob. Agents Chemother., 43 (1999) 902–906.
-  M.-K. Kharel, K.-K. Liou, J.-K. Sohng, H.-C. Lee, Production of
    dTDP-4-keto-6-deoxy-D-glucose by immobilization of dTDPD-
    glucose 4,6-dehydratase, J. Microbiol. Biotechnol., 14 (2004)
    297–301. 
-  B. Brena, P. González-Pombo, F. Batista-Viera, Immobilization
    of Enzymes: A Literature Survey, Immobilization of Enzymes
    and Cells, 2013, pp. 15–31. 
-  L. Fernandez-Lopez, S.G. Pedrero, N. Lopez-Carrobles,
    B.C. Gorines, J.J. Virgen-Ortíz, R. Fernandez-Lafuente, Effect
    of protein load on stability of immobilized enzymes, Enzyme
    Microbiol. Technol., 98 (2017) 18–25. 
-  M. Kumakura, I. Kaetsu, Interaction of enzyme with polymer
    matrix in immobilized enzymes, Helv. Chim. Acta, 66 (1983)
    2044–2048. 
-  X. Zou, S. Wei, S. Badieyan, M. Schroeder, J. Jasensky,
    C.L. Brooks III, E. Neil G. Marsh, Z. Chen, Investigating the
    effect of two-point surface attachment on enzyme stability and
    activity, J. Am. Chem. Soc., 140 (2018) 16560–16569. 
-  R. Bussamara, L. Dall’Agnol, A. Schrank, K.F. Fernandes,
    M.H. Vainstein, Optimal conditions for continuous immobilization
    of Pseudozyma hubeiensis (strain HB85A) lipase by
    adsorption in a packed-bed reactor by response surface
    methodology, Enzyme Res., 2012 (2012), doi: 10.1155/2012/329178. 
-  S.Z. Mazlan, S.A. Hanifah, Effects of temperature and pH
    on immobilized laccase activity in conjugated methacrylateacrylate
    microspheres, Int. J. Polym. Sci., 2017 (2017) 5657271,
    doi: 10.1155/2017/5657271. 
-  T. Nematian, A. Shakeri, Z. Salehi, A.A. Saboury, Lipase
    immobilized on functionalized superparamagnetic few-layer
    graphene oxide as an efficient nanobiocatalyst for biodiesel
    production from Chlorella vulgaris bio-oil, Biotechnology,
    13 (2020) 1–15. 
-  M. Karra-Châabouni, I. Bouaziz, S. Boufi, A.M.B. do Rego,
    Y. Gargouri, Physical immobilization of Rhizopus oryzae lipase
    onto cellulose substrate: activity and stability studies, Colloids
    Surf., B, 66 (2008) 168–177. 
-  J. Lasch, R. Koelsch, Enzyme leakage and multipoint attachment
    of agarose‐bound enzyme preparations, FEBS J., 82 (1978)
    181–186.