References

  1. M.Y. Zhang, Y.Z. Chi, Y.C. Hao, Research progress in coating wastewater treatment technologies, Ind. Water Treat., 38 (2018) 7–12.
  2. L.M. Blank, The cell and P: from cellular function to biotechnological application, Curr. Opin. Biotechnol., 23 (2012) 846–851.
  3. Organisation Internationale des Constructeurs d’Automobiles, World Auto Production Reached 80.1 Million in 2011, International Organization of Motor Vehicle Manufacturers, 2021 Production Statistics, 2022. Available at: https://www.oica. net/category/production-statistics/2021-statistics/
  4. S. Gubernat, A. Maslon, J. Czarnota, P. Koszelnik, Reactive materials in the removal of phosphorus compounds from wastewater—a review, Materials (Basel), 13 (2020) 3377, doi: 10.3390/ma13153377.
  5. L.J. Leng, J.Q. Zhang, S.Y. Xu, Q. Xiong, X.W. Xu, J.N. Li, H.J. Huang, Meat and bone meal (MBM) incineration ash for phosphate removal from wastewater and afterward phosphorus recovery, J. Cleaner Prod., 238 (2019) 117960, doi: 10.1016/j. jclepro.2019.117960.
  6. D. Cordell, J.-O. Drangert, S. White, The story of phosphorus: global food security and food for thought, Global Environ. Change, 19 (2009) 292–305.
  7. J.C. Sun, A.W. Gao, X.H. Wang, X.Y. Xu, J.Q. Song, Removal of phosphorus from wastewater by different morphological alumina, Molecules, 25 (2020) 3092, doi: 10.3390/molecules25133092.
  8. J. Zhang, L. Tang, W.W. Tang, Y. Zhong, K.Y. Luo, M.B. Duan, W.L. Xing, J. Liang, Removal and recovery of phosphorus from low-strength wastewaters by flow-electrode capacitive deionization, Sep. Purif. Technol., 237 (2020) 116322, doi: 10.1016/j.seppur.2019.116322.
  9. D.W. Schindler, S.R. Carpenter, S.C. Chapra, R.E. Hecky, D.M. Orihel, Reducing phosphorus to curb lake eutrophication is a success, Environ. Sci. Technol., 50 (2016) 8923–8929.
  10. F. Bozorgpour, H.F. Ramandi, P. Jafari, S. Samadi, S.S. Yazd, M. Aliabadi, Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: comparison with chitosan/Al2O3/Fe3O4 beads, Int. J. Biol. Macromol., 93 (2016) 557–565.
  11. H.M. Zou, Y. Wang, Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization, Bioresour. Technol., 211 (2016) 87–92.
  12. D.Y. Wu, B.H. Zhang, C.J. Li, Z.J. Zhang, H.N. Kong, Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment, J. Colloid Interface Sci., 304 (2006) 300–306.
  13. M. Gouider, N. Mlaik, M. Feki, S. Sayadi, Integrated physicochemical and biological treatment process for fluoride and phosphorus removal from fertilizer plant wastewater, Water Environ. Res., 83 (2011) 731–738.
  14. H.J. Wang, W.Y. Dong, T. Li, T.Z. Liu, A modified BAF system configuring synergistic denitrification and chemical phosphorus precipitation: examination on pollutants removal and clogging development, Bioresour. Technol., 189 (2015) 44–52.
  15. A. Chiavola, S. Bongirolami, G. Di Francesco, Technicaleconomic comparison of chemical precipitation and ion exchange processes for the removal of phosphorus from wastewater, Water Sci. Technol., 81 (2020) 1329–1335.
  16. L. Li, H.L. Pang, J.G. He, J. Zhang, Characterization of phosphorus species distribution in waste activated sludge after anaerobic digestion and chemical precipitation with Fe3+ and Mg2+, Chem. Eng. J., 373 (2019) 1279–1285.
  17. O. Gutierrez, D. Park, K.R. Sharma, Z.G. Yuan, Iron salts dosage for sulfide control in sewers induces chemical phosphorus removal during wastewater treatment, Water Res., 44 (2010) 3467–3475.
  18. L. Egle, H. Rechberger, M. Zessner, Overview and description of technologies for recovering phosphorus from municipal wastewater, Resour. Conserv. Recycl., 105 (2015) 325–346.
  19. L. Qiu, M. Zhang, X.Q. Yu, P. Zheng, A novel Fe(II)-Ca synergistic phosphorus removal process: process optimization and phosphorus recovery, Environ. Sci. Pollut. Res., 25 (2018) 1543–1550.
  20. J. Thistleton, T. Clark, P. Pearce, S.A. Parsons, Mechanisms of chemical phosphorus removal: 1—iron(II) salts, Process Saf. Environ. Prot., 79 (2001) 339–344.
  21. G.W. Fernandes, A. Kunz, R.L.R. Steinmetz, A. Szogi, M. Vanotti, E.M. de Moraes Flores, V.L. Dressler, Chemical phosphorus removal: a clean strategy for piggery wastewater management in Brazil, Environ. Technol., 33 (2012) 1677–1683.
  22. L. Ji, C.S. Yin, X.Y. Chen, X.H. Liu, Z.W. Zhao, Hydrogen peroxide coordination-calcium salt precipitation for deep phosphorus removal from crude sodium tungstate solution, Hydrometallurgy, 191 (2020) 105189, doi:10.1016/j. hydromet.2019.105189.
  23. K. Xu, H. Tao, T. Deng, Removal of phosphate from coating wastewater using magnetic Fe-Cu bimetal oxide modified fly ash, J. Water Reuse Desal., 6 (2016) 430–436.
  24. M. Markiewicz, W. Mrozik, K. Rezwan, J. Thöming, J. Hupka, C. Jungnickel, Changes in zeta potential of imidazolium ionic liquids modified minerals – implications for determining mechanism of adsorption, Chemosphere, 90 (2013) 706–712.
  25. J. Thistleton, T.-A. Berry, P. Pearce, S.A. Parsons, Mechanisms of chemical phosphorus removal II: iron(III) salts, Process Saf. Environ. Prot., 80 (2002) 265–269.
  26. L. Qiu, P. Zheng, M. Zhang, X.Q. Yu, A. Ghulam, Phosphorus removal using ferric–calcium complex as precipitant: parameters optimization and phosphorus-recycling potential, Chem. Eng. J., 268 (2015) 230–235.
  27. T. Zhang, L.L. Ding, H.Q. Ren, Z.T. Guo, J. Tan, Thermodynamic modeling of ferric phosphate precipitation for phosphorus removal and recovery from wastewater, J. Hazard. Mater., 176 (2010) 444–450.
  28. L. Guérin, C. Coufort-Saudejaud, A. Liné, C. Frances, Dynamics of aggregate size and shape properties under sequenced flocculation in a turbulent Taylor-Couette reactor, J. Colloid Interface Sci., 491 (2017) 167–178.
  29. L. Qiu, M. Zhang, X. Yu, P. Zheng, A novel Fe(II)-Ca synergistic phosphorus removal process: process optimization and phosphorus recovery, Environ. Sci. Pollut. Res., 25 (2018) 1543–1550.
  30. D. Liu, S. Zhou, Application of chemical coagulation to phosphorus removal from glyphosate wastewater, Int. J. Environ. Sci. Technol., 19 (2022) 2345–2352.