References

  1. Y.R. Gu, S.Z. Shen, B.J. Han, X.L. Tian, F.X. Yang, K.Q. Zhang, Family livestock waste: an ignored pollutant resource of antibiotic resistance genes, Ecotoxicol. Environ. Saf., 197 (2020) 110567, doi:10.1016/j.ecoenv.2020.110567.
  2. L.J. Niu, G.M. Zhang, G. Xian, Z.J. Ren, T. Wei, Q.G. Li, Y. Zhang, Z.G Zou, Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: performance, activation mechanism and degradation pathway, Sep. Purif. Technol., 259 (2021) 118156, doi: 10.1016/j.seppur.2020.118156.
  3. M. Wu, C. Wang, Y. Zhao, L. Xiao, C. Zhang, X. Yu, B. Luo, B.O. Hu, W. Fan, W. Shi, Hydrothermal synthesis of porous Rh-In2O3 nanostructures with visible-light-driven photocatalytic degradation of tetracycline, Cryst. Eng. Comm., 17 (2015) 2336–2345.
  4. Y. Yue, Y.-J. Liu, J.C. Wang, R. Vukanti, Y. Ge, Enrichment of potential degrading bacteria accelerates removal of tetracyclines and their epimers from cow manure biochar amended soil, Chemosphere, 278 (2021) 130358, doi: 10.1016/j.chemosphere.2021.130358.
  5. Y.P. Li, X.L. Sun, Y.M. Tang, Y.H. Ng, L.T.Li, F. Jiang, J. Wang, W.R. Chen, L.S. Li, Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like ZnO/BiVO4 nanocomposite, Mater. Chem. Phys., 271 (2021) 124871, doi: 10.1016/j.matchemphys.2021.124871.
  6. Q.Q. Xu, H. Yi, C. Lai, G.M. Zeng, D.L. Huang, M.F. Li, Z.W. An, X.Q. Huo, L. Qin, S.Y. Liu, B.S. Li, M.M. Zhang,
    X.G. Liu, L. Chen, Construction of 2D/2D nano-structured rGO-BWO photocatalysts for efficient tetracycline degradation, Catal. Commun., 124 (2019) 113–117.
  7. W.L. Shi, F. Guo, H.B. Wang, M.M. Han, H. Li, S.L. Yuan, H. Huang, Y. Liu, Z.H. Kang, Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation, Appl. Catal., B, 219 (2017) 36–44.
  8. S.F. Tang, M.Z. Zhao, D.L. Yuan, X. Li, X.Y. Zhang, Z.B. Wang, T.F. Jiao, K. Wang, MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation, Sep. Purif. Technol., 255 (2021) 117690, doi: 10.1016/j.seppur.2020.117690.
  9. A. Giacobbo, A. Meneguzzi, A.M. Bernardes, M.N. de Pinho, Pressure-driven membrane processes for the recovery of antioxidant compounds from winery effluents, J. Cleaner Prod., 155 (2017) 172–178.
  10. A. Maged, J. Iqbal, S. Kharbish, I.S. Ismael, A. Bhatnagar, Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: characterization, sorption and mechanistic studies, J. Hazard. Mater., 384 (2020) 121320, doi: 10.1016/j.jhazmat.2019.121320.
  11. M. Karpov, B. Seiwert, V. Mordehay, T. Reemtsma, T. Polubesova, B. Chefetz, Transformation of oxytetracycline by redoxactive Fe(III)- and Mn(IV)-containing minerals: processes and mechanisms, Water Res., 145 (2018) 136–145.
  12. X.L. Song, Y. Wang, T. Zhu, J.L. Liu, S.W. Zhang, Facile synthesis a novel core–shell amino functionalized MIL-125(Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light, Chem. Eng. J., 416 (2021) 129126, doi: 10.1016/j.cej.2021.129126.
  13. Y.H. Ma, M.Y. Li, J.J. Jiang, T.R. Li, X.Y. Wang, Y.Y. Song, S.S. Dong, In-situ prepared MIL-53(Fe)/BiOI photocatalyst for efficient degradation of tetracycline under visible-light driven photo-Fenton system: investigation of performance and mechanism, J. Alloys Compd., 870 (2021) 159524, doi:10.1016/j.jallcom.2021.159524.
  14. Y. Gao, Q. Wang, G.Z. Ji, A.M. Li, Degradation of antibiotic pollutants by persulfate activated with various carbon materials, Chem. Eng. J., 429 (2022) 132387, doi: 10.1016/j.cej.2021.132387.
  15. Z.Q. Yang, Y. Li, X.Y. Zhang, X.D. Cui, S. He, H. Liang, A. Ding, Sludge activated carbon-based CoFe2O4-SAC nanocomposites used as heterogeneous catalysts for degrading antibiotic norfloxacin through activating peroxymonosulfate, Chem. Eng. J., 384 (2020) 123319, doi: 10.1016/j.cej.2019.123319.
  16. J. Cuevas, N. Dirocie, F. Yunta, C.G. Delgado, D.E. González Santamaría, A.I. Ruiz, R. Fernández, E. Eymar, Evaluation of the sorption potential of mineral materials using tetracycline as a model pollutant, Minerals, 9 (2019) 453, doi: 10.3390/ min9070453.
  17. L. Jia, R.J. Chen, J. Xu, L.N. Zhang, X.Z. Chen, N. Bi, J. Gou, T.Q. Zhao, A stick-like intelligent multicolor
    nano-sensor for the detection of tetracycline: the integration of nano-clay and carbon dots, J. Hazard. Mater., 413 (2021) 125296, doi: 10.1016/j.jhazmat.2021.125296.
  18. W. Wang, J.J. Fang, H. Chen, Nano-confined g-C3N4 in mesoporous SiO2 with improved quantum size effect and tunable structure for photocatalytic tetracycline antibiotic degradation, J. Alloys Compd., 819 (2020) 153064, doi: 10.1016/j.jallcom.2019.153064.
  19. Y.M. Hunge, A.A. Yadav, S.W. Kang, H. Kim, Photocatalytic degradation of tetracycline antibiotics using hydrothermally synthesized two-dimensional molybdenum disulfide/titanium dioxide composites, J. Colloid Interface Sci., 606 (2022) 454–463.
  20. D. Hao, Y.F. Chen, Y. Zhang, N. You, Nanocomposites of zero-valent iron@biochar derived from agricultural wastes for adsorptive removal of tetracyclines, Chemosphere, 284 (2021) 131342, doi:10.1016/j.chemosphere.2021.131342.
  21. X.X. Huang, N.W. Zhu, X.R. Wei, Y. Ding, Y.X. Ke, P.X. Wu, Z.H. Liu, Mechanism insight into efficient peroxydisulfate activation by novel nano zero-valent iron anchored yCo3O4 (nZVI/yCo3O4) composites, J. Hazard. Mater., 400 (2020) 123157, doi: 10.1016/j.jhazmat.2020.123157.
  22. J. Chen, X.I. Chen, W. Xu, Z. Xu, J. Chen, H. Jia, J. Chen, Hydrolysis driving redox reaction to synthesize Mn-Fe binary oxides as highly active catalysts for the removal of toluene, Chem. Eng. J., 330 (2017) 281–293.
  23. Y.U. Wang, D. Yang, S. Li, L. Zhang, G. Zheng, L. Guo, Layered copper manganese oxide for the efficient catalytic CO and VOCs oxidation, Chem. Eng. J., 357 (2019) 258–268.
  24. C. Wang, C.H. Zhang, W.C. Hua, Y.L. Guo, G.Z. Lu, S. Gil, A. Giroir-Fendler, Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts, Chem. Eng. J., 315 (2017) 392–402.
  25. Y.H. Bai, J.F. Su, Q. Wen, G.Q. Li, L. Xue, T.L. Huang, Removal of tetracycline by denitrifying Mn(II)-oxidizing bacterium Pseudomonas sp. H117 and biomaterials (BMO and MBMO): efficiency and mechanisms, Bioresour. Technol., 312 (2020) 123565, doi: 10.1016/j.biortech.2020.123565.
  26. S. Mallakpour, E. Khadem, Linear and nonlinear behavior of crosslinked chitosan/N-doped graphene quantum dot nanocomposite films in cadmium cation uptake, Sci. Total Environ., 690 (2019) 1245–1253.
  27. M. Moradi, M. Heydari, M. Darvishmotevalli, K. Karimyan, V.K. Gupta, Y. Vasseghian, H. Sharafi, Kinetic and modeling data on phenol removal by Iron-modified Scoria Powder (FSP) from aqueous solutions, Data Brief, 20 (2018) 957–968.
  28. M. Heydari, K. Karimyan, M. Darvishmotevalli, A. Karami, Y. Vasseghian, N. Azizi, M. Ghayebzadeh, M. Moradi, Data for efficiency comparison of raw pumice and manganese-modified pumice for removal phenol from aqueous environments— application of response surface methodology, Data Brief, 20 (2018) 1942–1954.
  29. Z. Zhang, Y. Chen, C.Y. Hu, C. Zuo, P. Wang, W.Q. Chen, T.Q. Ao, Efficient removal of tetracycline by a hierarchically porous ZIF-8 metal organic framework, Environ. Res., 198 (2021) 111254, doi:10.1016/j.envres.2021.111254.
  30. S. Sahu, P. Kar, N. Bishoyi, L. Mallik, R.K. Patel, Synthesis of polypyrrole-modified layered double hydroxides for efficient removal of Cr(VI), J. Chem. Eng. Data, 64 (2019) 4357–4368.
  31. M. Moradi, O.B. Naeej, A. Azari, A.M. Bandpei, A.J. Jafari, A. Esrafili, R.R. Kalantary, A comparative study of nitrate removal from aqueous solutions using zeolite, nZVI–zeolite, nZVI and iron powder adsorbents, Desal. Water. Treat., 74 (2017) 278–288.
  32. N. Osouleddini, M. Moradi, T. Khosravi, R. Khamotian, H. Sharafi, The iron modification effect on performance of natural adsorbent scoria for malachite green dye removal from aquatic environments: modeling, optimization, isotherms, and kinetic evaluation, Desal. Water Treat., 123 (2018) 348–357.
  33. H.N. Tran, S.-J. You, A. Hosseini-Bandegharaei, H.-P. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  34. E.C. Lima, A.A. Gomes, H.N. Tran, Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS° and ΔH°), J. Mol. Liq., 311 (2020) 113315, doi:10.1016/j.molliq.2020.113315.
  35. A. Lim, J.J. Chew, L.H. Ngu, S. Ismadji, D.S. Khaerudini, J. Sunarso, Synthesis, characterization, adsorption isotherm, and kinetic study of oil palm trunk-derived activated carbon for tannin removal from aqueous solution, ACS Omega, 5 (2020) 28673–28683.
  36. P. Borthakur, M. Aryafard, Z. Zara, R. David, B. Minofar, M.R. Das, M. Vithanage, Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: implications on wastewater treatment, J. Environ. Manage., 283 (2021) 111989, doi: 10.1016/j.jenvman.2021.111989.
  37. F. Gao, Z.X. Xu, Y.J. Dai, Removal of tetracycline from wastewater using magnetic biochar: a comparative study of performance based on the preparation method, Environ. Technol. Innovation, 24 (2021) 101916, doi:10.1016/j.eti.2021.101916.
  38. S.Y. Zheng, Z. Kong, L.J. Meng, J.L. Song, N. Jiang, Y.N. Gao, J.L. Guo, T.W. Mu, M.H. Huang, MIL-88A grown in-situ on graphitic carbon nitride (g-C3N4) as a novel sorbent: synthesis, characterization, and high-performance of tetracycline removal and mechanism, Adv. Powder Technol., 31 (2020) 4344–4353.
  39. H. Qiao, X.X. Wang, P. Liao, C. Zhang, C.X. Liu, Enhanced sequestration of tetracycline by Mn(II) encapsulated mesoporous silica nanoparticles: synergistic sorption and mechanism, Chemosphere, 284 (2021) 131334, doi: 10.1016/j.chemosphere.2021.131334.
  40. F.-Z. Cui, R.-R. Liang, Q.-Y. Qi, G.-F. Jiang, X. Zhao, Efficient removal of Cr(VI) from aqueous solutions by a dual‐pore covalent organic framework, Adv. Sustainable Syst., 3 (2019) 1800150, doi:10.1002/adsu.201800150.
  41. N. Minju, K. Venkat Swaroop, K. Haribabu, V. Sivasubramanian, P. Senthil Kumar, Removal of fluoride from aqueous media by magnesium oxide-coated nanoparticles, Desal. Water Treat., 53 (2015) 2905–2910.
  42. U. Menon, H. Poelman, V. Bliznuk, V.V. Galvita, D. Poelman, G.B. Marin, Nature of the active sites for the total oxidation of toluene by CuO–CeO2/Al2O3, J. Catal., 295 (2012) 91–103.
  43. J. Xia, Y.X. Gao, G. Yu, Tetracycline removal from aqueous solution using zirconium-based metal-organic frameworks (Zr-MOFs) with different pore size and topology: adsorption isotherm, kinetic and mechanism studies, J. Colloid Interface Sci., 590 (2021) 495–505.
  44. M. Oveisi, M.A. Asli, N.M. Mahmoodi, MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems, J. Hazard. Mater., 347 (2018) 123–140.
  45. K.N. Wang, J.J. Wu, M.L. Zhu, Y.-Z. Zheng, X. Tao, Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal–organic framework composites, J. Solid State Chem., 284 (2020) 121200, doi: 10.1016/j.jssc.2020.121200.
  46. J. Abdi, N.M. Mahmoodi, M. Vossoughi, I. Alemzadeh, Synthesis of magnetic metal-organic framework nanocomposite (ZIF-8@SiO2@MnFe2O4) as a novel adsorbent for selective dye removal from multicomponent systems, Microporous Mesoporous Mater., 273 (2019) 177–188.
  47. J. Ma, B.Q. Zhou, H. Zhang, W.B. Zhang, Fe/S modified sludgebased biochar for tetracycline removal from water, Powder Technol., 364 (2020) 889–900.
  48. A. Umar, R. Kumar, M.S. Akhtar, G. Kumar, S.H. Kim, Growth and properties of well-crystalline cerium oxide (CeO2) nanoflakes for environmental and sensor applications, J. Colloid Interface Sci., 454 (2015) 61–68.
  49. P.K. Sane, S. Tambat, S. Sontakke, P. Nemade, Visible light removal of reactive dyes using CeO2 synthesized by precipitation, J. Environ. Chem. Eng., 644 (2018) 4476–4489.
  50. S. Mishra, S. Soren, A.K. Debnath, D.K. Aswal, N. Das, P. Parhi, Rapid microwave – hydrothermal synthesis of CeO2 nanoparticles for simultaneous adsorption/photodegradation of organic dyes under visible light, Optik, 169 (2018) 125–136.
  51. X. Meng, Z.M. Liu, C. Deng, M.F. Zhu, D.Y. Wang, K. Li, Y. Deng, M.M. Jing, Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal, J. Hazard. Mater., 320 (2016) 495–503.
  52. M. Minale, Z.L. Gu, A. Guadie, Y. Li, Y. Wang, Y. Meng, X.J. Wang, Hydrous manganese dioxide modified poly(sodium acrylate) hydrogel composite as a novel adsorbent for enhanced removal of tetracycline and lead from water, Chemosphere, 272 (2021) 129902, doi: 10.1016/j.chemosphere.2021.129902.
  53. S. Sicwetsha, S. Mvango, T. Nyokong, P. Mashazi, Effective ROS generation and morphological effect of copper oxide nanoparticles as catalysts, J. Nanopart. Res., 23 (2021) 227, doi: 10.1007/s11051-021-05334-x.
  54. Dr. S.C. Rood, O. Pastor-Algaba, A. Tosca-Princep, Dr. B. Pinho, Dr. M. Isaacs, Dr. L. Torrente-Murciano, Dr. S. Eslava, Synergistic effect of simultaneous doping of ceria nanorods with Cu and Cr on CO oxidation and NO reduction, Chem. Eur. J., 27 (2021) 2165–2174.
  55. R.V. Lakshmi, S.T. Aruna, S. Sampath, Ceria nanoparticles visà-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating, Appl. Surf. Sci., 393 (2016) 397–404.