References

  1. R. Sedlak, Phosphorus and Nitrogen Removal from Municipal Wastewater: Principles and Practice, Routledge, 2018, doi: 10.1201/9780203743546.
  2. J.A. Oleszkiewicz, J.L. Barnard, Nutrient removal technology in North America and the European Union: a review, Water Qual. Res. J., 41 (2006) 449–462.
  3. M.S. Nasr, M.A.E. Moustafa, H.A.E. Seif, G. El Kobrosy, Modelling and simulation of German BIOGEST/EL-AGAMY wastewater treatment plants–Egypt using GPS-X simulator, Alexandria Eng. J., 50 (2011) 351–357.
  4. W. Singhirunnusom, M.K. Stenstrom, A critical analysis of economic factors for diverse wastewater treatment processes: case studies in Thailand, J. Environ. Eng. Manage., 20 (2010) 263–268.
  5. S. Jafarinejad, A framework for the design of the future energyefficient, cost-effective, reliable, resilient, and sustainable fullscale wastewater treatment plants, Curr. Opin. Environ. Sci. Health, 13 (2020) 91–100.
  6. K.P. Tsagarakis, D.D. Mara, A.N. Angelakis, Application of cost criteria for selection of municipal wastewater treatment systems, Water Air Soil Pollut., 142 (2003) 187–210.
  7. J.B. Copp, B.R. Johnson, A. Shaw, M.S. Burbano, B. Narayanan, K. Frank, D. Kinnear, H. Melcer, K. Brischke,
    A balancing act: the consulting engineers’ pragmatic view of process modelling, Water Sci. Technol., 59 (2009) 763–769.
  8. S.F. Pereira, Modelling of a wastewater treatment plant using GPS-X, Faculdade de Ciências e Tecnologia, 2014.
  9. H.N. Ai, M.L. Li, Q. He, Simulation and optimization of denitrifying phosphorus removal in A2/O, Adv. Mater. Res., 374 (2012) 553–559.
  10. S. Jafarinejad, Simulation for the performance and economic evaluation of conventional activated sludge process replacing by sequencing batch reactor technology in a petroleum refinery wastewater treatment plant, Chem. Eng., 3 (2019) 45–57.
  11. E.F. Latif, E.S. Elmolla, U.F. Mahmoud, M.M. Saleh, Intermittent cycle extended aeration system pilot scale (ICEAS-PS) for wastewater treatment: experimental results and process simulation, Int. J. Environ. Sci. Technol., 17 (2020) 3261–3270.
  12. E.F. Latif, Applying novel methods in conventional activated sludge plants to treat low-strength wastewater, Environ. Monit. Assess., 194 (2022) 1–14, doi: 10.1007/s10661-022-09968-9.
  13. A.M. Faris, H.M. Zwain, M. Hosseinzadeh, S.M. Siadatmousavi, Modeling of novel processes for eliminating sidestreams impacts on full-scale sewage treatment plant using GPS-X7, Sci. Rep., 12 (2022) 1–17.
  14. N. Abbasi, M. Ahmadi, M. Naseri, Quality and cost analysis of a wastewater treatment plant using GPS-X and CapdetWorks simulation programs, J. Environ. Manage., 284 (2021) 111993, doi:10.1016/j.jenvman.2021.111993.
  15. A.U.A. Arif, M.T. Sorour, S.A. Aly, Cost analysis of activated sludge and membrane bioreactor WWTPs using CapdetWorks simulation program: case study of Tikrit WWTP (middle Iraq), Alexandria Eng. J., 59 (2020) 4659–4667.
  16. R.G. Hunter, J.W. Day, A.R. Wiegman, R.R. Lane, Municipal wastewater treatment costs with an emphasis on assimilation wetlands in the Louisiana coastal zone, Ecol. Eng., 137 (2019) 21–25.
  17. A. Zadorojniy, S. Wasserkrug, S. Zeltyn, V. Lipets, Unleashing analytics to reduce costs and improve quality in wastewater treatment, INFORMS J. Appl. Anal., 49 (2019) 262–268.
  18. M. Simon-Várhelyi, V.M. Cristea, A.V. Luca, Reducing energy costs of the wastewater treatment plant by improved scheduling of the periodic influent load, J. Environ. Manage., 262 (2020) 110294, doi:10.1016/j.jenvman.2020.110294.
  19. R. Piotrowski, A. Paul, M. Lewandowski, Improving SBR performance alongside with cost reduction through optimizing biological processes and dissolved oxygen concentration trajectory, Appl. Sci., 9 (2019) 2268, doi:10.3390/app9112268.
  20. Y. Jiang, A. Dinar, P. Hellegers, Economics of social trade-off: balancing wastewater treatment cost and ecosystem damage, J. Environ. Manage., 211 (2018) 42–52.
  21. M. Mirabi, M. Karrabi, M. Gheibi, An economic analysis of industrial wastewater treatment systems using multi-attribute decision-making methods (case study: Toos Industrial Estate, Mashhad, Iran), Desal. Water Treat., 146 (2019) 131–140.
  22. W.T. Li, J.J. Kim, J.G. Hong, Cost comparative analysis to evaluate wastewater service charge savings strategies, Procedia Eng., 145 (2016) 74–81.
  23. L. Desa, P. Kängsepp, L. Quadri, G. Bellotti, K. Sørensen, C. Pellicer-Nàcher, Improving and upgrading an existing activated sludge with a compact MBBR–disc filters parallel line for municipal wastewater treatment in touristic alpine areas, Water Pract. Technol., 15 (2020) 515–527.
  24. D. Karna, C. Visvanathan, In: Water and Wastewater Treatment Technologies, From Conventional Activated Sludge Process to Membrane-Aerated Biofilm Reactors: Scope, Applications, and Challenges, Springer Nature Singapore Pte Ltd., 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore, 2019, pp. 237–263.
  25. Metcalf & Eddy, M. Abu-Orf, G. Bowden, W. Pfrang, G. Tchobanoglous, Wastewater Engineering: Treatment and Resource Recovery, McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121, United States of America, 2014.
  26. H. Ødegaard, The Moving Bed Biofilm Reactor. Water Environmental Engineering and Reuse of Water, Hokkaido Press, Hokkaido, 1999, pp. 250–305.
  27. W.E. Federation, Biofilm Reactors – WEF MoP 35, McGraw-Hill Education, New York, 2011.
  28. L.K. Wang, N.K. Shammas, Y.-T. Hung, Advanced Biological Treatment Processes, Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA, 2010.
  29. A. Rivas, I. Irizar, E. Ayesa, Model-based optimisation of wastewater treatment plants design, Environ. Model. Software, 23 (2008) 435–450.
  30. M. Nowrouzi, H. Abyar, A framework for the design and optimization of integrated fixed-film activated sludgemembrane bioreactor configuration by focusing on costcoupled life cycle assessment, J. Cleaner Prod., 296 (2021) 126557, doi: 10.1016/j.jclepro.2021.126557.
  31. Hydromantis, Inc., GPS-X Technical Reference, Hydromantis, Inc., Consulting Engineers, Hamilton, ON, Canada, 2019.
  32. S. Jafarinejad, Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation, Appl. Water Sci., 7 (2017) 2513–2521.
  33. Hydromantis, Inc., CapdetWorks Ver. 4: State-of-the-Art Software for the Design and Cost Estimation of Wastewater Treatment Plants. User’s Guide, Hydromantis, Inc., Consulting Engineers: Hamilton, ON, Canada, 2018.
  34. M. Nowrouzi, H. Abyar, A. Rostami, Cost coupled removal efficiency analyses of activated sludge technologies to achieve the cost-effective wastewater treatment system in the meat processing units, J. Environ. Manage., 283 (2021) 111991, doi: 10.1016/j.jenvman.2021.111991.
  35. H.R. Zeinaddine, A. Ebrahimi, V. Alipour, L. Rezaei, Removal of nitrogen and phosphorous from wastewater of seafood market by intermittent cycle extended aeration system (ICEAS), J. Health Sci. Surveill. Syst., 1 (2013) 89–93.
  36. A.H. Mahvi, A. Mesdaghinia, F. Karakani, Feasibility of continuous flow sequencing batch reactor in domestic wastewater treatment, Am. J. Appl. Sci., 1 (2004) 348–353.
  37. M.C. Collivignarelli, A. Abbà, M. Carnevale Miino, V. Torretta, What advanced treatments can be used to minimize the production of sewage sludge in WWTPs?, Appl. Sci., 9 (2019) 2650, doi: 10.3390/app9132650.
  38. M.C. Collivignarelli, A. Abbà, G. Bertanza, Oxygen transfer improvement in MBBR process, Environ. Sci. Pollut. Res., 36 (2019) 10727–10737.
  39. G.T. Daigger, J.P. Boltz, Oxygen transfer in moving bed biofilm reactor and integrated fixed film activated sludge processes: Daigger and Boltz, Water Environ. Res., 90 (2018) 615–622.
  40. S. Sander, J. Behnisch, M. Wagner, Energy, cost and design aspects of coarse-and fine-bubble aeration systems in the MBBR IFAS process, Water Sci. Technol., 75 (2017) 890–897.
  41. X.-J. Wang, S.-Q. Xia, L. Chen, J.-F. Zhao, N.J. Renault, J.-M. Chovelon, Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor, Process Biochem., 41 (2006) 824–828.
  42. M. Piculell, T. Welander, K. Jönsson, Organic removal activity in biofilm and suspended biomass fractions of MBBR systems, Water Sci. Technol., 69 (2014) 55–61.