References

  1. V. Kumar, P. Dhall, S. Naithani, A. Kumar, R. Kumar, Biological approach for the treatment of pulp and paper industry effluent in sequence batch reactor, J. Biorem. Biodegrad., 5 (2014) 1000218, doi: 10.4172/2155-6199.1000218.
  2. A.K. Choudhary, S. Kumar, C. Sharma, Removal of chlorophenolics from pulp and paper mill wastewater through constructed wetland, Water Environ. Res., 85 (2013) 54–62.
  3. European Paper Industry – Statistics & Facts, 2021. Available online: https://www.statista.com/topics/7737/paper-industryin- europe/ (Accessed on 27 December 2021).
  4. I. Haq, S. Kumar, A. Raj, M. Lohani, G.N.V. Satyanarayana, Genotoxicity assessment of pulp and paper mill effluent before and after bacterial degradation using Allium cepa test, Chemosphere,169 (2017) 642–650.
  5. I. Haq, P. Mazumder, A.S. Kalamdhad, Recent advances in removal of lignin from paper industry wastewater and its industrial applications – a review, Bioresour. Technol., 312 (2020) 123636, doi:10.1016/j.biortech.2020.123636.
  6. E. Bakthavachalam, R. Periyaswamy, B. Lutz, B. Elango, P. Rajendran, L. Bornmann, A scientometric analysis of international collaboration and growth of literature at the macro level, Malaysian J. Lib. Inf. Sci., 20 (2017) 41–50.
  7. A. Raj, S. Kumar, I. Haq, S.K. Singh, Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp., Ecol. Eng., 71 (2014) 355–362.
  8. I. Haq, A. Raj, Pulp and Paper Mill Wastewater: Ecotoxicological Effects and Bioremediation Approaches for Environmental Safety, R. Bharagava, G. Saxena, eds., Bioremediation of Industrial Waste for Environmental Safety, Springer, Singapore, 2020, pp. 330–356, doi: 10.1007/978-981-13-3426-9_14.
  9. P. Sharma, S.P. Singh, Pollutants Characterization and Toxicity Assessment of Pulp and Paper Industry Sludge for Safe Environmental Disposal, I. Haq, A.S. Kalamdhad, Eds., Emerging Treatment Technologies for Waste Management, Springer, Singapore, 2021, pp. 207–223, doi: 10.1016/j.cscee.2021.100163.
  10. P. Sharma, S. Tripathi, R. Chandra, Highly efficient phytoremediation potential of metal and metalloids from the pulp paper industry waste employing Eclipta alba (L) and Alternanthera philoxeroide (L): biosorption and pollution reduction, Bioresour. Technol., 319 (2020) 124147, doi: 1016/j.biortech.2020.124147.
  11. P.C. Lindholm-Lehto, J.S. Knuutinen, H.S.J. Ahkola, S.H. Herve, Refractory organic pollutants and toxicity in pulp and paper mill wastewaters, Environ. Sci. Pollut. Res., 22 (2015) 6473–6499.
  12. D. Pokhrel, T. Viraraghavan, Treatment of pulp and paper mill wastewater—a review, Sci. Total Environ., 333 (2004) 37–58.
  13. N. Abedinzadeh, M. Shariat, S.M. Monavari, A. Pendashteh, Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater, Process Saf. Environ. Prot., 116 (2018) 82–91.
  14. E. Molina-Sánchez, J.C. Leyva-Díaz, F.J. Cortés-García, V. Molina-Moreno, Proposal of sustainability indicators for the waste management from the paper industry within the circular economy model, Water, 10 (2018) 1014, doi: 10.3390/w10081014.
  15. K.V. Krishna, O.S. Sarkar, V. Mohan, Bioelectrochemical treatment of paper and pulp wastewater in comparison with anaerobic process: integrating chemical coagulation with simultaneous power production, Bioresour. Technol., 174 (2014) 142–151.
  16. M. Michniewicz, M. Janiga, Overview of techniques considered as best available according to the EU document – BAT conclusions for the production of pulp and paper, Przegląd papierniczy, 8 (2016) 100462.
  17. I. Kruszelnicka, D. Ginter-Kramarczyk, M. Michalkiewicz, A. Klozinski, S. Zajchowski, P. Jakubowska,
    J. Tomaszewska, Wood-polymer composites in moving bed technology. Polimery, 59 (2014) 739–746.
  18. A.D. Santos, R.C. Martins, R.M. Quinta-Ferreira, L.M. Castro, Moving bed biofilm reactor (MBBR) for dairy wastewater treatment, Energy Rep., 6–8 (2020) 340–344.
  19. R. Chhotu, R. Pushpa, G.K. Alebel, G.M.A. Mebrhit, Pulp and paper industry wastewater treatment: use of microbes and their enzymes, Phys. Sci. Rev., 5 (2020) 20190050, doi: 10.1515/ psr-2019-0050.
  20. L. Deng, W. Guo, H.H. Ngo, X. Zhang, X.C. Wang, Q. Zhang, R. Chen, New functional biocarriers for enhancing the performance of a hybrid moving bed biofilm reactor-membrane bioreactor system, Bioresour. Technol., 208 (2016) 87–93.
  21. T. Felföldi, L. Jurecska, B. Vajna, K. Barkács, J. Makk, G. Cebea, G. Szabó, G. Záray, K. Márialigeti, Texture and type of polymer fiber carrier determine bacterial colonization and biofilm properties in wastewater treatment, Chem. Eng. J., 264 (2015) 824–834.
  22. O. Elliott, S. Gray, M. McClay, B. Nassief, A. Nunnelley, E. Vogt, J. Ekong, K. Kardel, A. Khoshkhoo, G. Proaño,
    D.M. Blersch, A.L. Carrano, Design and manufacturing of high surface area 3D‐printed media for moving bed bioreactors for wastewater treatment, J. Contemp. Water Res. Educ., 160 (2017) 144–156.
  23. D. Ginter-Kramarczyk, I. Kruszelnicka, M. Michałkiewicz, P. Muszyński, S. Zajchowski, J. Tomaszewska, Biofilm on the polymer composites - qualitative and quantitative microbiological analysis, J. Environ. Health Sci. Eng., 19 (2021) 641–649.