References

  1. S. Ilyas, B. Abdullah, D. Tahir, Enhancement of absorbing frequency and photo-catalytic performance by temperature treatment of composites Fe3O4-AC nanoparticle, Adv. Powder Technol., 31 (2020) 905–913.
  2. B. Ulum, S. Ilyas, A.N. Fahri, I. Mutmainna, M.A. Anugrah, N. Yudasari, E.B. Demmalino, D. Tahir, Composite carbonlignin/zinc oxide nanocrystalline ball-like hexagonal mediated from Jatropha curcas L leaf as photocatalyst for industrial dye degradation, J. Inorg. Organomet. Polym., 30 (2020) 4905–4916.
  3. H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo, X. Li, A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies, Chin. J. Catal., 43 (2022) 178–214.
  4. R.K. Nekouei, F. Pahlevani, R. Rajarao, R. Golmohammadzadeh, V. Sahajwalla, Direct transformation of waste printed circuit boards to nano-structured powders through mechanical alloying, Mater. Des., 141 (2018) 26–36.
  5. N. Loudjani, T. Gouasmia, M. Bououdina, J.L. Bobet, Phase formation and magnetic properties of nanocrytalline Ni70Co30 alloy prepared by mechanical alloying, J. Alloys Compd., 846 (2020) 156392, doi:10.1016/j.jallcom.2020.156392.
  6. A. Ghasedi, E. Koushki, M. Zirak, H. Alehdaghi, Improvement in structural, electrical, and optical properties of Al-doped ZnO nanolayers by sodium carbonate prepared via solgel method, Appl. Phys. A, 126 (2020) 474, doi: 10.1007/s00339-020-03663-7.
  7. B. Arik, Characterization and wrinkle resistance enhancement by sol-gel method of variously pretreated linen fabrics, Fibers Polym., 21 (2020) 82–89.
  8. P.C. Torres-Mayanga, D. Lachos-Perez, A. Mudhoo, S. Kumar, A.B. Brown, M. Tyufekchiev, G. Dragone,
    S.I. Mussatto, M.A. Rostagno, M. Timko, T. Forster-Carneiro, Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: a review, Biomass Bioenergy, 130 (2019) 105397, doi: 10.1016/j.biombioe.2019.105397.
  9. K. Suwa, L. Cojocaru, K. Wienands, C. Hofmann, P.S.C. Schulze, A.J. Bett, K. Winkler, J.C. Goldschmidt, S.W. Glunz, H. Nishide, Vapor-phase formation of a hole-transporting thiophene polymer layer for evaporated perovskite solar cells, ACS Appl. Mater. Interfaces, 12 (2020) 6496–6502.
  10. M.A. Davenport, M.P Confer, T.C. Douglas, T.B. Rawot Chhetri, J.M. Allred, Large single crystals of V1–xMoxO2 from a twostep chemical vapor transport synthesis, Cryst. Growth Des., 20 (2020) 3635–3640.
  11. N. Liao, D. Jia, Z. Yang, Y. Li, Improved toughness of ZrB2–SiC composites with nanopowders obtained by mechanical alloying, J. Phys. Chem. Solids, 136 (2020) 109153, doi: 10.1016/j.jpcs.2019.109153.
  12. B.D. Long, N.V. Khanh, D.N. Binh, N.H. Hai, Thermoelectric properties of quaternary chalcogenide Cu2ZnSnS4 synthesized by mechanical alloying, Powder Metall., 63 (2020) 220–226.
  13. A.A.A. Joubori, C. Suryanarayana, Synthesis of stable and metastable phases in the Ni-Si system by mechanical alloying, Powder Technol., 302 (2016) 8–14.
  14. W. Zhang, P. Li, X. Zou, Z. Yu, X. Yang, X. Pan, Y. Zhao, Y. Zhang, Equiaxial nano-crystals Nb3Al superconductor prepared by optimized mechanically alloying, J. Mater. Sci., 54 (2019) 5022–5031.
  15. J.-K. Han, K.-D. Liss, T.G. Langdon, M. Kawasaki, Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg, Sci. Rep., 9 (2019) 17186, doi: 10.1038/s41598-019-53614-3.
  16. Y. Xu, Y. Sin, X. Dai, B. Liao, S. Zhou, D. Chen, Microstructure and magnetic properties of amorphous/nanocrystalline Ti50Fe50 alloys prepared by mechanical alloying, J. Mater. Res. Technol., 8 (2019) 2486–2493.
  17. R. Titorenkova, E. Dyulgerova, V. Petkova, R. Ilieva, Carbonation and dihydroxylation of apatite during high energy milling of biphasic Ca-phosphate ceramics, Ceram. Int., 45 (2019) 7025–7033.
  18. M. Mursalat, M. Schoenitz, E.L. Dreizin, Composite Al∙Ti powders prepared by high-energy milling with different process controls agents, Adv. Powder Technol., 30 (2019) 1319–1328.
  19. V.M. Tabie, X. Shi, J. Li, C. Cai, X. Xu, Tribological properties of Ti–4Si–xZr–yY2O3/5TiO2 composites prepared by high-energy milling, cold pressing and sintering, Int. J. Precis. Eng. Manuf., 20 (2019) 1929–1937.
  20. S. Ambika, M. Devasena, I.M. Nambi, Synthesis, characterization, and performance of high energy ball milled meso-scale zero valent iron in Fenton reaction, J. Environ. Manage., 181 (2016) 847–855.
  21. X. Ma, J. Wen, S. Zhang, H. Yuan, K. Li, F. Yan, X. Zhang, Y. Chen, Crystal CoxB (x = 1–3) synthesized by a ball-milling method as high-performance electrocatalysts for the oxygen evolution reaction, ACS Sustainable Chem. Eng., 5 (2017) 10266–10274.
  22. L.S. de Oliveira, M. de Oliveira Melquiades, C. da Costa Pinto, D.M. Trichês, S.M. de Souza, Phase transformations in a NiTiGe system induced by high energy milling, J. Solid State Chem., 281 (2020) 121056, doi: 10.1016/j.jssc.2019.121056.
  23. A.T. Ochoa, N. Kametani, C.C. Gallardo, J.E.L. Sillas, N. Adachi, Y. Todaka, J.M.H. Ramirez, Formation of a metastable FCC phase and high Mg solubility in the Ti-Mg system by mechanical alloying, Powder Technol., 374 (2020) 348–352.
  24. C.-L. Chen, Suprianto, Microstructure and mechanical properties of AlCuNiFeCr high entropy alloy coatings by mechanical alloying, Surf. Coat. Technol., 386 (2020) 125443, doi: 10.1016/j.surfcoat.2020.125443.
  25. S. Ghobrial, D.W. Kirk, S.J. Thorpe, Solid state amorphization in the Ni-Nb-Y system by mechanical alloying, J. Non-Cryst. Solids, 502 (2018) 1–8.
  26. S.N. Alam, N. Sharma, D. Panda, A. Kumar, D. Sampenga, A. Sairam, V. Sarky, M.B. Krupateja, Mechanical milling of Al and synthesis of in-situ Al2O3 particles by mechanical alloying of Al-CuO system, J. Alloys Compd., 735 (2018) 799–812.
  27. R. Ratnawulan, R. Ramli, A. Fauzi, S.H. AE, Synthesis and characterization of polystyrene/CuO-Fe2O3 nanocomposites from natural materials as hydrophobic photocatalytic coatings, Crystals, 11 (2021) 31, doi:10.3390/cryst11010031.
  28. P.V. Viet, T.H. The Vinh, N.T.N. Dung, C.M. Thi, Facile ball-milling synthesis of TiO2 modified ZnO for efficient photocatalytic removal of atmospheric nitric oxide gas under solar light irradiation, Chem. Phys. Lett., 775 (2021) 138642, doi: 10.1016/j.cplett.2021.138642.
  29. J. Singh, S. Sharma, S. Soni, S. Sharma, R.C. Singh, Influence of different milling media on structural, morphological and optical properties of the ZnO nanoparticles synthesized by ball milling process, Mater. Sci. Semicond. Process, 98 (2019) 29–38.
  30. A. Saboor, S.M. Shah, H. Hussain, Band gap tuning and applications of ZnO nanorods in hybrid solar cell: Ag-doped verses Nd-doped ZnO nanorods, Mater. Sci. Semicond. Process, 93 (2019) 215–225.
  31. P. Wang, Y. Wang, L. Ye, M. Wu, R. Xie, X. Wang, X. Chen, Z. Fan, J. Wang, W. Hu, Ferroelectric localized field–enhanced ZnO nanosheet ultraviolet photodetector with high sensitivity and low dark current, Small, 14 (2018) 1800492, doi: 10.1002/smll.201800492.
  32. N. Akhtar, S.K. Metkar, A. Girigoswami, K. Girigoswami, ZnO nanoflower based sensitive nano-biosensor for amyloid detection, Mater. Sci. Eng., C, 78 (2017) 960–968.
  33. Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Enhanced NO2 sensing aptness of ZnO nanowire/CuO nanoparticle heterostructure-based gas sensors, Ceram. Int., 45 (2019) 1513–1522.
  34. R. Ahmad, M.S. Ahn, Y.B. Hahn, Fabrication of a non-enzymatic glucose sensor field-effect transistor based on verticallyoriented ZnO nanorods modified with Fe2O3, Electrochem. Commun., 77 (2017) 107–111.
  35. S.K. Kokate, C.V. Jagtap, P.K. Baviskar, S.R. Jadkar, H.M. Pathan, K.C. Mohite, CdS sensitized cadmium doped ZnO solar cell: fabrication and characterizations, Optik, 157 (2018) 628–643.
  36. F.X. Liang, Y. Gao, C. Xie, X.W. Tong, Z.J. Li, L.B. Luo, Recent advances in the fabrication of graphene–ZnO heterojunctions for optoelectronic device applications, J. Mater. Chem. C, 6 (2018) 3815–3833.
  37. W. Li, Y. Li, D. Zhang, Y. Lan, J. Guo, CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate, J. Hazard. Mater., 381 (2020) 121209, doi:10.1016/j.jhazmat.2019.121209.
  38. X. Zhang, G. Zhang, S. Wang, S. Li, S. Jiao, Porous CuO microspheres architectures as high-performance cathode materials for aluminum-ion battery, J. Mater. Chem. A, 6 (2018) 3084–3090.
  39. M. Poloju, N. Jayababu, M.V. Ramana Reddy, Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor, Mater. Sci. Eng., B, 227 (2018) 61–67.
  40. A. Khataee, D. Kalderis, P. Gholami, A. Fazli, M. Moschogiannaki, V. Binas, M. Lykaki, M. Konsolakis,
    Cu2O-CuO@biochar composite: synthesis, characterization and its efficient photocatalytic performance, Appl. Surf. Sci., 498 (2019) 143846, doi: 10.1016/j.apsusc.2019.143846.
  41. S. Suryani, H. Heryanto, R. Rusdaeni, A.N. Fahri, D. Tahir, Quantitative analysis of diffraction and infra-red spectra of composite cement/BaSO4/Fe3O4 for determining correlation between attenuation coefficient, structural and optical properties, Ceram. Int., 46 (2020) 18601–18607.
  42. Saepurahman, R. Hashaikeh, Insight into ball milling for size reduction and nanoparticles production of H-Y zeolite, Mater. Chem. Phys., 220 (2018) 322–330.
  43. I. Feijoo, M. Cabeza, P. Merino, G. Pena, M.C. Perez, S. Cruz, P. Rey, Estimation of crystallite size and lattice strain in nanosized TiC particle-reinforced 6005A aluminium alloy from X-ray diffraction line broadening, Powder Technol., 343 (2019) 19–28.
  44. A.H. Taghvaei, M. Stoica, G. Vaughan, M. Ghaffari, S. Maleksaeedi, K. Janghorban, Microstructural characterization and amorphous phase formation in Co40Fe22Ta8B30 powders produced by mechanical alloying, J. Alloys Compd., 512 (2012) 85–93.
  45. S. Ilyas, Heryanto, B. Abdullah, D. Tahir, X-ray diffraction analysis of nanocomposite Fe3O4/activated carbon by Williamson–Hall and size-strain plot methods, Nano-Struct. Nano-Objects, 20 (2019) 100396, doi:10.1016/j.nanoso.2019.100396.
  46. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and sizestrain plot methods, Solid State Sci., 13 (2011) 251–256.
  47. E. Sakher, N. Loudjani, M. Benchiheub, M. Bououdina, Influence of milling time on structural and microstructural parameters of Ni50Ti50 prepared by mechanical alloying using Rietveld analysis, J. Nanomater., 2018 (2018) 2560641, doi: 10.1155/2018/2560641.
  48. P. Singh, A. Abhash, B.N. Yadav, M. Shafeeq, I.B. Singh, D.P. Mondal, Effect of milling time on powder characteristics and mechanical performance of Ti4wt%Al alloy, Powder Technol., 342 (2019) 275–287.
  49. R. Mayahi, A. Shokuhfar, M.R. Vaezi, Characterization and thermodynamic study of nanostructured Cu-26Zn-4Al (wt.%) shape memory alloy through mechanical alloying, Mater. Sci. Eng., 51 (2020) 153–162.
  50. B.K. Das, T. Das, K. Parashar, A. Thirumurugan, S.K.S. Parashar, Structural, band gap tuning and electrical properties of Cu doped ZnO nanoparticles synthesized by mechanical alloying, J. Mater. Sci.: Mater. Electron., 28 (2017) 15127–15134.
  51. A.A.M. Sakib, S.M. Masum, J. Hoinkis, R. Islam, M.A.I. Molla, Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye, J. Compos. Sci., 3 (2019) 91, doi: 10.3390/jcs3030091.
  52. D. Tahir, S. Tougaard, Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy, J. Phys.: Condens. Matter, 24 (2012) 175002.
  53. H.C. Shin, D. Tahir, S. Seo, Y.R. Denny, S.K. Oh, H.J. Kang, S. Heo, J.G. Chung, J.C. Lee, S. Tougaard, Reflection electron energy loss spectroscopy for ultrathin gate oxide materials, Surf. Interface Anal., 44 (2012) 623–627.
  54. D. Tahir, S. Tougaard, Electronic and optical properties of selected polymers studied by reflection electron energy loss spectroscopy, J. Appl. Phys., 111 (2012) 054101, doi: 10.1063/1.3688327.
  55. D. Tahir, J. Kraaer, S. Tougaard, Electronic and optical properties of Fe, Pd, and Ti studied by reflection electron energy loss spectroscopy, J. Appl. Phys., 115 (2014) 243508, doi: 10.1063/1.4885876.
  56. D. Tahir, S. Ilyas, B. Abdullah, B. Armynah, H.J. Kang, Electronic properties of composite iron (II, III) oxide
    (Fe3O4) carbonaceous absorber materials by electron spectroscopy, J. Electron. Spectrosc. Relat. Phenom., 229 (2018) 47–51.
  57. D. Tahir, S.K. Oh, H.J. Kang, S. Tougaard, Quantitative analysis of reflection electron energy loss spectra todetermine electronic and optical properties of Fe–Ni alloy thin films, J. Electron. Spectrosc. Relat. Phenom., 206 (2016) 6–11.
  58. S. Suryani, Heryanto, D. Tahir, Stopping powers and inelastic mean free path from quantitative analysis of experimental REELS spectra for electrons in Ti, Fe, Ni, and Pd, Surf. Interface Anal., 52 (2019) 1–7.
  59. Y.R. Denny, H.C. Shin, S. Seo, S.K. Oh, H.J. Kang, D. Tahir, S. Heo, J.G. Chung, J.C. Lee, S. Tougaard, Electronic and optical properties of hafnium indium zinc oxide thin film by XPS and REELS, J. Electron. Spectrosc. Relat. Phenom., 185 (2012) 18–22.
  60. Gh.H. Khorrami, A. Khorsand Zak, A. Kompany, R. Yousefi, Optical and structural properties of X-doped (X = Mn, Mg, and Zn) PZT nanoparticles by Kramers–Kronig and size strain plot methods, Ceram. Int., 38 (2012) 5683–5690.
  61. A.K. Zak, W.H.A. Majid, Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol–gel method, in infrared region, Ceram. Int., 37 (2011) 753–758.
  62. A. Khorsand Zak, A. Ghanbari, T. ShekoftehNarm, The effect of molybdenum on optical properties of ZnO nanoparticles in ultraviolet–visible region, Adv. Powder Technol., 28 (2017) 2980–2986.
  63. M. Ghasemifard, S.M. Hosseini, G.H. Khorrami, Synthesis and structure of PMN–PT ceramic nanopowder free from pyrochlore phase, Ceram. Int., 35 (2009) 2899–2905.
  64. L. Legan, T. Leskovar, M. Črešnar, F. Cavalli, D. Innocenti, P. Ropret, Non-invasive reflection FTIR characterization of archaeological burnt bones: reference database and case studies, J. Cult. Heritage, 41 (2020) 13–26.
  65. Nurhasmi, Heryanto, A.N. Fahri, S. Ilyas, A. Ansar, B. Abdullah, D. Tahir, Study on optical phonon vibration and gamma ray shielding properties of composite geopolymer fly ashmetal, Radiat. Phys. Chem., 180 (2021) 109250, doi: 10.1016/j.radphyschem.2020.109250.
  66. D. Tahir, H. Heryanto, S. Ilyas, A.N. Fahri, R. Rahmat, M.H. Rahmi, Y. Taryana, S.G. Sukaryo, Excellent electromagnetic wave absorption of Co/Fe2O3 composites by additional activated carbon for tuning the optical and the magnetic properties, J. Alloys Compd., 864 (2021) 158780, doi:10.1016/j.jallcom.2021.158780.
  67. N. Rauf, S. Ilyas, H. Heryanto, R. Rahmat, A.N. Fahri, M.H. Fahri, D. Tahir, The correlation between structural and optical properties of zinc hydroxide nanoparticle in supports photocatalytic performance, Opt. Mater., 112 (2021) 110780, doi: 10.1016/j.optmat.2020.110780.
  68. Y.K. Lahsmin, H. Heryanto, S. Ilyas, A.N. Fahri, B. Abdullah, D. Tahir, Optical properties determined from infrared spectroscopy and structural properties from diffraction spectroscopy of composites Fe/CNs/PVA for electromagnetic wave absorption, Opt. Mater., 111 (2021) 110639, doi: 10.1016/j.optmat.2020.110639.
  69. O.S. Jangong, H. Heryanto, R. Rahmat, I. Mutmainna, P.L. Gareso, D. Tahir, Effect of sugar palm fiber (SPF) to the structural and optical properties of bioplastics (SPF/starch/chitosan/polypropylene) in supporting mechanical properties and degradation performance, J. Polym. Environ., 29 (2021) 1694–1705.
  70. C.-L. Chen, C.-H. Lin, In-situ dispersed La oxides of Al6061 composites by mechanical alloying, J. Alloys Compd., 775 (2019) 1156–1163.
  71. T. Atsue, I.B. Ogunniranye, O.E. Oyewande, A study of the structural and magnetic properties of nitrides of iron and nickel (XN; X = Fe, Ni) using density functional theory approach, Electron. Struct., 2 (2020) 045002.
  72. V. Nádaždy, K. Gmucová, P. Nádaždy, P. Siffalovic, K. Vegso, M. Jergel, F. Schauer, E. Majkova, Thickness effect on structural defect-related density of states and crystallinity in P3HT thin films on ITO substrates, J. Phys. Chem. C, 122 (2018) 5881–5887.
  73. M.C. Oliveira, V.S. Fonseca, N.F.A. Neto, R.A.P. Ribeiro, E. Longo, S.R. de Lazaro, M.R.D. Bomio, Connecting theory with experiment to understand the photocatalytic activity of CuO–ZnO heterostructure, Ceram. Int., 46 (2020) 9446–9454.
  74. S. Ilyas, H. Heryanto, D. Tahir, Correlation between structural and optical properties of CuO/carbon nanoparticle in supports the photocatalytic performance and attenuate the electromagnetic wave, J. Environ. Chem. Eng., 9 (2021) 104670, doi: 10.1016/j.jece.2020.104670.
  75. F.A. AlAbduljabbar, S. Haider, F.A.A. Ali, A.A. Alghyamah, W.A. Almasry, R. Patel, I.M. Mujtaba, TiO2 nanostructured coated functionally modified and composite electrospun chitosan nanofibers membrane for efficient photocatalytic degradation of organic pollutant in wastewater, J. Mater. Res. Technol., 15 (2021) 5197–5212.
  76. F.A. AlAbduljabbar, S. Haider, F. Abdulraqeb Ahmed Ali, A.A. Alghyamah, W.A. Almasry, R. Patel, I.M. Mujtaba, Efficient photocatalytic degradation of organic pollutant in wastewater by electrospun functionally modified polyacrylonitrile nanofibers membrane anchoring TiO2 nanostructured, Membranes, 11 (2021) 785, doi:10.3390/membranes11100785.
  77. I. Neelakanta Reddy, Ch. Venkata Reddy, M. Sreedhar, J. Shim, M. Cho, D. Kim, Effect of ball milling on optical properties and visible photocatalytic activity of Fe doped ZnO nanoparticles, Mater. Sci. Eng., B, 240 (2019) 33–40.
  78. A. Fouda, S.S. Salem, A.R. Wassel, M.F. Hamza, Th.I. Shaheen, Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye, Heliyon, 6 (2020) e04896, doi: 10.1016/j. heliyon.2020.e04896.