References

  1. X. Cheng, E. Peterkin, G.A. Burlingame, A study on volatile organic sulfide causes of odors at Philadelphia’s Northeast Water Pollution Control Plant, Water Res., 39 (2005) 3781–3790.
  2. H. Tong, P. Zhao, H. Zhang, Y. Tian, X. Chen, W. Zhao, M. Li, Identification and characterization of steady and occluded water in drinking water distribution systems, Chemosphere, 119 (2015) 1141–1147.
  3. Y. Wang, G. Zhu, Evaluating the corrosiveness in drinking water distribution system in Yancheng City, China, Desal. Water Treat., 242 (2021) 250–259.
  4. J. Zywiec, B. Tchórzewska-Cieslak, D. Papciak, A. Domon, Changes of microbiological parameters of water in domestic distribution system in terms of water supply safety, Desal. Water Treat., 226 (2021) 37–51.
  5. T.L. Gerke, J.B. Maynard, M.R. Schock, D.L. Lytle, Physiochemical characterization of five iron tubercles from a single drinking water distribution system: possible new insights on their formation and growth, Corros. Sci., 50 (2008) 2030–2039.
  6. P.S. Husband, J.B. Boxall, Asset deterioration and discolouration in water distribution systems, Water Res., 45 (2011) 113–124.
  7. X. Li, H. Wang, C. Hu, M. Yang, H. Hu, J. Niu, Characteristics of biofilms and iron corrosion scales with ground and surface waters in drinking water distribution systems, Corros. Sci., 90 (2015) 331–339.
  8. A. Mesdaghinia, R.N. Nabizadeh, S. Nasseri, S.A. Imran, M.T. Samadi, M. Hadi, Potential for iron release in drinking water distribution system: a case study of Hamedan city, Iran, Desal. Water Treat., 57 (2016) 14461–14472.
  9. H. Tong, P. Zhao, C. Huang, H. Zhang, Y. Tian, Z. Li, Development of iron release, turbidity, and dissolved silica integrated models for desalinated water in drinking water distribution systems, Desal. Water Treat., 57 (2016) 398–507.
  10. H. Zhong, Z. Shi, G. Jiang, Z. Yuan, Decreasing microbially influenced metal corrosion using free nitrous acid in a simulated water injection system, Water Res., 172 (2020) 115470, doi: 10.1016/j.watres.2020.115470.
  11. J. Jin, G. Wu, Y. Guan, Effect of bacterial communities on the formation of cast iron corrosion tubercles in reclaimed water, Water Res., 71 (2015) 207–218.
  12. H. Liu, T. Gu, G. Zhang, W. Wang, S. Dong, Y. Cheng, H. Liu, Corrosion inhibition of carbon steel in
    CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors, Corros. Sci., 105 (2016) 149–160.
  13. F. Yang, B. Shi, J. Gu, D. Wang, M. Yang, Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system, Water Res., 46 (2012) 5423–5433.
  14. D. Xu, T. Gu, Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm, Int. Biodeterior. Biodegrad., 91 (2014) 74–81.
  15. B. Liu, Z. Li, X. Yang, C. Du, X. Li, Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil, Bioelectrochemistry, 135 (2020) 107551, doi:10.1016/j.bioelechem.2020.107551.
  16. H. Wan, D. Song, D. Zhang, C. Du, D. Xu, Z. Liu, D. Ding, X. Li, Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment, Bioelectrochemistry, 121 (2018) 18–26.
  17. K. Alasvand Zarasvand, V.R. Rai, Microorganisms: induction and inhibition of corrosion in metals, Int. Biodeterior. Biodegrad., 87 (2014) 66–74.
  18. C.L. Rempel, R.W. Evitts, M. Nemati, Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir, J. Ind. Microbiol. Biotechnol., 33 (2006) 878–886.
  19. L.M. Gieg, T.R. Jack, J.M. Foght, Biological souring and mitigation in oil reservoirs, Appl. Microbiol. Biotechnol., 92 (2011) 263–282.
  20. K.A. Weber, M.M. Urrutia, P.F. Churchill, R.K. Kukkadapu, E.E. Roden, Anaerobic redox cycling of iron by freshwater sediment microorganisms, Environ. Microbiol., 8 (2006) 100–113.
  21. A.J. Coby, F. Picardal, E. Shelobolina, H. Xu, E.E. Roden, Repeated anaerobic microbial redox cycling of iron, Appl. Environ. Microbiol., 77 (2011) 6036, doi: 10.1128/AEM.00276-11.
  22. H. Wang, C. Hu, L. Zhang, X. Li, Y. Zhang, M. Yang, Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems, Water Res., 65 (2014) 362–370.
  23. H. Wang, C. Hu, L. Han, M. Yang, Effects of microbial cycling of Fe(II)/Fe(III) and Fe/N on cast iron corrosion in simulated drinking water distribution systems, Corros. Sci., 100 (2015) 599–606.
  24. H. Zhang, Y. Liu, L. Wang, S. Liu, Iron release and characteristics of corrosion scales and bacterial communities in drinking water supply pipes of different materials with varied nitrate concentrations, Chemosphere, 301 (2022) 134652, doi: 10.1016/j.chemosphere.2022.134652.
  25. R. Kumaraswamy, S. Ebert, M.R. Gray, P.M. Fedorak, J.M. Foght, Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production, Appl. Microbiol. Biotechnol., 89 (2011) 2027–2038.
  26. Q. Ma, Y. Cai, Z. He, Complete genome sequence of a novel aerobic denitrifying strain, Pseudomonas monteilii CY06, Mar. Geonomics, 47 (2019) 100661, doi:10.1016/j.margen.2019.02.001.
  27. E.W. Rice, L. Bridgewater, Standard Methods for the Examination of Water and Wastewater, APHA/AWWA/WPCF, Washington, D.C., USA, 2012.
  28. M.S. Rahman, G.A. Gagnon, Bench-scale evaluation of drinking water treatment parameters on iron particles and water quality, Water Res., 48 (2014) 137–147.
  29. H. Liu, K.D. Schonberger, C.-Y. Peng, J.F. Ferguson, E. Desormeaux, P. Meyerhofer, H. Luckenbach, G.V. Korshin, Effects of blending of desalinated and conventionally treated surface water on iron corrosion and its release from corroding surfaces and pre-existing scales, Water Res., 47 (2013) 3817–3826.
  30. H. Wang, S. Masters, M.A. Edwards, J.O. Falkinham, A. Pruden, Effect of disinfectant, water age, and pipe materials on bacterial and eukaryotic community structure in drinking water biofilm, Environ. Sci. Technol., 48 (2014) 1426–1435.
  31. Y. Zhu, H. Wang, X. Li, C. Hu, M. Yang, J. Qu, Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection, Water Res., 60 (2014) 174–181.
  32. P. Sarin, V.L. Snoeyink, J. Bebee, K.K. Jim, M.A. Beckett, W.M. Kriven, J.A. Clement, Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen, Water Res., 38 (2004) 1259–1269.
  33. H. Sun, B. Shi, F. Yang, D. Wang, Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system, Water Res., 114 (2017) 69–77.
  34. C. Pillay, J. Lin, Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems: effects of additional nitrate sources, Int. Biodeterior. Biodegrad., 83 (2013) 158–165.
  35. C.-Y. Peng, G.V. Korshin, Speciation of trace inorganic contaminants in corrosion scales and deposits formed in drinking water distribution systems, Water Res., 45 (2011) 5553–5563.
  36. S.V. Lalonde, L.A. Amskold, L.A. Warren, K.O. Konhauser, Surface chemical reactivity and metal adsorptive properties of natural cyanobacterial mats from an alkaline hydrothermal spring, Yellowstone National Park, Chem. Geol., 243 (2007) 36–52.
  37. A.P. Hitchcock, J.J. Dynes, J.R. Lawrence, M. Obst, G.D.W. Swerhone, D.R. Korber, G.G. Leppard, Soft X-ray spectromicros copy of nickel sorption in a natural river biofilm, Geobiology, 7 (2009) 432–453.
  38. M. Li, Z. Liu, Y. Chen, Y. Hai, Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials, Water Res., 106 (2016) 593–603.
  39. B. Zhen, W.J. Zhang, G. Song, Y. Huang, Iron-dependent nitrate reduction by anammox consortia in continuous-flow reactors: a novel prospective scheme for autotrophic nitrogen removal, Sci. Total Environ., 692 (2019) 582–588.