References

  1. H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, A. Marimuthu, Nanoflower-like yttrium-doped ZnO photocatalyst for the degradation of methylene blue dye, Photochem. Photobio., 94 (2018) 237–246.
  2. D.M. Shahi, S.A. Hassanzadeh-Tabrizi, A. Saffar-Teluri, Microemulsion synthesis, optical and photocatalytic properties of vanadium-doped nano ZnO, Int. J. Appl. Ceram. Technol., 15 (2018) 479–488.
  3. H.A. Rafaie, N.A.A.M. Nazam, N.In.T. Ramli, R. Mohamed, M.F. Kasim, Synthesis, characterization and photocatalytic activities of Al-doped ZnO for degradation of methyl orange dye under UV light irradiation, J. Aust. Ceram. Soc., 57 (2021) 479–488.
  4. S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: a review, J. Cleaner Prod., 276 (2020) 124319.
  5. A. Akhundi, A. Habibi-Yangjeh, M. Abitorabi, S.R. Pouran, Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts, Catal. Rev. Sci. Eng., 61 (2019) 595–628.
  6. A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, S. Feizpoor, A. Rouhi, Review on heterogeneous photocatalytic disinfection of waterborne, airborne, and foodborne viruses: can we win against pathogenic viruses?, J. Colloid Interface Sci., 580 (2020) 503–514.
  7. A. Phuruangrat, B. Kuntalue, S. Thongtem, T. Thongtem, Hydrothermal synthesis of hexagonal ZnO nanoplates used for photodegradation of methylene blue, Optik, 226 (2021) 165949.
  8. A. Phuruangrat, S. Thongtem, T. Thongtem, Ultrasonic-assisted synthesis and photocatalytic performance of ZnO nanoplates and microflowers, Mater. Des., 107 (2016) 250–256.
  9. S. Shahbazkhany, M. Salehi, M. Mousavi-Kamazani, Facile synthesis, characterization, and decolorization activity of Mn2+ and Al3+ co-doped hexagonal-like ZnO nanostructures as photocatalysts, Appl. Organometal. Chem., 34 (2020) e5346.
  10. X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes, Nanoscale Res. Lett., 12 (2017) 143.
  11. N.T. Nguyen, V.A. Nguyen, Synthesis, characterization, and photocatalytic activity of ZnO nanomaterials prepared by a green, nonchemical route, J. Nanomater., 2020 (2020) 1768371.
  12. K.A. Isai, V.S. Shrivastava, Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study, SN Appl. Sci., 1 (2019) 1247.
  13. J. Kaur, S. Bansal, S. Singhal, Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method, Phys. B, 416 (2013) 33–38.
  14. S.H. Ferreira, M. Morais, D. Nunes, M.J. Oliveira, A. Rovisco, A. Pimentel, H. Águas, E. Fortunato, R. Martins, High UV and sunlight photocatalytic performance of porous ZnO nanostructures synthesized by a facile and fast microwave hydrothermal method, Materials, 14 (2021) 2385.
  15. Z. Zhou, J. Wang, C.G. Jhun, ZnO nanospheres fabricated by mechanochemical method with photocatalytic properties, Catalysts, 11 (2021) 572.
  16. L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self sensitizeddegradation of malachite green dye under solar light, Appl. Catal. A, 490 (2015) 42–49.
  17. A.M. Saad, M.R. Abukhadra, S.A.K. Ahmed, A.M. Elzanaty, A.H. Mady, M.A. Betiha, J.J. Shim, A.M. Rabie, Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce–ZnO nano-flowers under visible light, J. Environ. Manage., 258 (2020) 110043.
  18. G. Flores-Carrasco, M. Rodríguez-Peña, A. Urbieta, P. Fernández, M.E. Rabanal, ZnO nanoparticles with controllable Ce content for efficient photocatalytic degradation of MB synthesized by the polyol method, Catalysts, 11 (2021) 71.
  19. S. Sanguanprang, A. Phuruangrat, T. Thongtem, S. Thongtem, Characterization and photocatalysis of
    visible-light-driven Dy-doped ZnO nanoparticles synthesized by tartaric acidassisted combustion method, Inorg. Chem. Commun., 117 (2020) 107944.
  20. A. Khataee, R.D.C. Soltani, Y. Hanifehpour, M. Safarpour, H.G. Ranjbar, S.W. Joo, Synthesis and characterization of dysprosium-doped ZnO nanoparticles for photocatalysis of a textile dye under visible light irradiation, Ind. Eng. Chem., Res. 53 (2014) 1924−1932.
  21. A.R. Khataee, A. Karimi, R.D.C. Soltani, M. Safarpour, Y. Hanifehpour, S.W. Joo, Europium-doped ZnO as a visible light responsive nanocatalyst: sonochemical synthesis, characterization and response surface modeling of photocatalytic process, Appl. Catal. A, 488 (2014) 160–170.
  22. Y. Zong, Z. Li, X. Wang, J. Ma, Y. Men, Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles, Ceram. Int., 40 (2014) 10375–10382.
  23. S. Selvaraj, M.K.M.M. Navaneethana, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light, Mater. Sci. Semicond. Process., 103 (2019) 104622.
  24. O. Yayapao, T. Thongtem, A. Phuruangrat, S. Thongtem, Synthesis and characterization of highly efficient Gd doped ZnO photocatalyst irradiated with ultraviolet and visible radiations, Mater. Sci. Semicond. Process., 39 (2015) 786–792.
  25. Sukriti, P. Chand, V. Singh, Enhanced visible-light photocatalytic activity of samarium-doped zinc oxide nanostructures, J. Rare Earths, 38 (2020) 29–38.
  26. S.A. Ayon, M.M. Billah, S.S. Nishat, A. Kabir, Enhanced photocatalytic activity of Ho3+ doped ZnO NPs synthesized by modified sol–gel method: an experimental and theoretical investigation, J. Alloys Compd., 856 (2020) 158217.
  27. H. Cai, G. Liu, W. Lü, X. Li, L. Yu, D. Li, Effect of Ho-doping on photocatalytic activity of nanosized TiO2 catalyst, J. Rare Earths, 26 (2008) 71–75.
  28. X. Liu, P. Fang, Y. Liu, Z. Liu, D. Lu, Y. Gao, F. Chen, D. Wang, Y. Dai, Effect of holmium doping on the structure and photocatalytic behavior of TiO2-based nanosheets, J. Mater. Sci., 49 (2014) 8063–8073.
  29. G. Gaidamavičienė, A. Žalga, Synthesis, a structural and thermoanalytical study of Ca1–xSrxMoO4 ceramic, Mater. Chem. Phys., 241 (2020) 122339.
  30. P. Visuttipitukul, P. Sooksaen, N. Yongvanich, Sol–gel synthesis of SrTiO3 nanoparticles using acetic acid as a chelating agent, Ferroelectrics, 457 (2013) 82–88.
  31. Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073–3273, U.S.A., 2001.
  32. W.J. Evans, Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states, Organometallics, 35 (2016) 3088−3100.
  33. S. Yin, V. Sharma, A. McDannald, F.A. Reboredo, M. Jain, Magnetic and magnetocaloric properties of iron substituted holmium chromite and dysprosium chromite, RSC Adv., 6 (2016) 9475–9483.
  34. N. Rama, J.B. Philipp, M. Opel, A. Erb, V. Sankaranarayanan, R. Gross, M.S. Ramachandra Rao, Effect of rare earth ion substitution on the magnetic and transport properties of Pr0.7RE0.04Sr0.26MnO3 (RE = Er3+, Tb3+ and Ho3+), Eur. Phys. J. B, 38 (2004) 553–557.
  35. M. Rabiei, A Palevicius, A. Monshi, S. Nasiri, A. Vilkauskas, G. Janusas, Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction, Nanomaterials, 10 (2020) 1627.
  36. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye–Scherrer equation’, Nat. Nanotechnol., 6 (2011) 534.
  37. X. Xue, W. Ruan, L. Yang, W. Ji, Y. Xie, L. Chen, W. Song, B. Zhao, J.R. Lombardi, Surface-enhanced Raman scattering of molecules adsorbed on Co-doped ZnO nanoparticles, J. Raman Spectrosc., 43 (2012) 61–64.
  38. X. Guo, H. Guo, Y. Wang, Y. Li, L. Liu, H. Li, H. Lian, Y. Cheng, Synthesis of novel Ho2O3–Fe2O3 porous nanotubes and their ultra-high acetone-sensing properties, J. Porous Mater., 25 (2018) 1757–1763.
  39. L. Pavasaryte, S. Balu, T.C.K. Yang, Synthesis of sol–gel derived holmium aluminium garnet on exfoliated
    g‑C3N4: a novel visible‑light‑driven Z‑scheme photocatalyst for the degradation of sunset yellow FCF, J. Mater. Sci., 30 (2019) 20132–20143.
  40. P. Intaphong, A. Phuruangrat, H. Yeebu, K. Akhbari, T. Sakhon, S. Thongtem, T. Thongtem, Sonochemical synthesis of Pd nanoparticle/ZnO flower photocatalyst used for methylene blue and methyl orange degradation under UV radiation, Russ. J. Inorg. Chem., 66 (2021) 2123–2133.
  41. A. Phuruangrat, A. Nunpradit, T. Sakhon, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, Microwaveassisted synthesis of heterostructure Pd/ZnO flowers used for photocatalytic reaction of dyes illuminated by UV radiation, J. Aust. Ceram. Soc., 57 (2021) 1521–1530.
  42. W. Marimón-Bolívar, E.E. González, Study of agglomeration and magnetic sedimentation of Glutathione@Fe3O4 nanoparticles in water medium, Rev. DYNA, 85 (2018) 19–26.
  43. A. Phuruangrat, W. Kongpet, O. Yayapao, B. Kuntalue, S. Thongtem, T. Thongtem, Ultrasonic-assisted synthesis, characterization, and optical properties of Sb doped ZnO and their photocatalytic activities, J. Nanomater., 2014 (2014) 725817.
  44. S.N. Ogugua, O.M. Ntwaeaborwa, H.C. Swart, Luminescence, structure and insight on the inversion degree from normal to inverse spinel in a ZnAl(2–x)Fex3+O4 system, Bol. Soc. Esp. Ceram., 60 (2021) 147–162.
  45. J. Singh, S. Kaur, G. Kaur, S. Basu, M. Rawat, Biogenic ZnO nanoparticles: a study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight, Green Process. Synth., 8 (2019) 272–280.
  46. P. Hemalatha, S.N. Karthick, K.V. Hemalatha, M. Yi, H.J. Kim, M. Alagar, La-doped ZnO nanoflower as photocatalyst for methylene blue dye degradation under UV irradiation, J. Mater. Sci., 27 (2016) 2367–2378.
  47. I. Ahmad, M.S. Akhtar, E. Ahmed, M. Ahmad, Facile synthesis of Pr-doped ZnO photocatalyst using sol–gel method and its visible light photocatalytic activity, J. Mater. Sci., 31 (2020) 1084–1093.
  48. G. Hosseinzadeh, H. Rasoulnezhad, N. Ghasemian, R. Hosseinzadeh, Ultrasonic-assisted spray pyrolysis technique for synthesis of transparent S-doped TiO2 thin film, J. Aust. Ceram. Soc., 55 (2019) 387–394.
  49. G.K. Sukhadeve, S.Y. Janbandhu, S. Upadhyay, R.S. Gedam, Investigation of photocatalytic activity of TiO2 nanoparticles synthesized by sol–gel technique, J. Aust. Ceram. Soc., 58 (2022) 39–48.
  50. A.R. Kuldeep, R.S. Dhabbe, K.M. Garadkar, Development of g-C3N4-TiO2 visible active hybrid photocatalyst for the photodegradation of methyl orange, Res. Chem. Intermed., 47 (2021) 5155–5174.
  51. Y. Si, Y. Chen, M. Xu, X. Zhang, F. Zuo, Q. Yan, Synthesis and characterization of Z-scheme Ag2WO4/Bi2MoO6 heterojunction photocatalyst: enhanced visible-light photodegradation of organic pollutant, J. Mater. Sci., 31 (2020) 1191–1199.