References

  1. P. Pietraszek, J. Podedworna, Laboratory Exercises in Sewage Sludge Technology, Publishing House of the Warsaw University of Technology, Warsaw, 1990 (in Polish).
  2. G. Buraczewski, Activated Sludge Biotechnology, Polish Scientific Publishers PWN, Warsaw, 1994 (in Polish).
  3. J. Łomotowski, A. Szpindor, Nowoczesne Systemy Oczyszczania Ścieków, Wydawnictwo Arkady, Warszawa, 1999 (in Polish).
  4. H. Klimowicz, The Importance of Microfauna in Wastewater Treatment with Activated Sludge, Publishing House of the Institute of Environmental Protection, Warsaw, 1989 (in Polish).
  5. E. Fiałkowska, J. Fryda, A. Pajdak-Stós, K. Wiąckowski, Activated Sludge, Biology and Microscopic Analysis, Seidel – Przywecki Publishing House, Warsaw, 2010 (in Polish).
  6. R. Kocwa-Haluk, T. Woźniakiewicz, Microscopic analysis of activated sludge and its role in the control of the technological process of wastewater treatment, Tech. J. Environ., 108 (2011) 141–162 (in Polish).
  7. T.A. Marcinkowski, Processing of Sewage Sludge in the Liming Process, Publishing House of Polish Association of Sanitary Engineers and Technicians, Poznan-Wrocław, 2010 (in Polish).
  8. E. Neczaj, J. Bohdziewicz, Anaerobic Stabilization of Excess Thickened Sludge in the Ultrafiltration Process, New Look at Sewage Sludge – Renewable Energy Sources, Publishing House of the Czestochowa University of Technology, Czestochowa, 2003, pp. 261–270 (in Polish).
  9. M. Stępień, P. Krawczyk, M. Wołowicz, A. Mikołajczak, Disintegration of biological substrates before the fermentation process, Energy Market, 5 (2018) 15–19 (in Polish).
  10. B. Bień, J.D. Bień, Analysis of reject water formed in the mechanical dewatering process of digested sludge conditioned by physical and chemical methods, Energies, 15 (2022) 1678, doi: 10.3390/en15051678.
  11. Zawieja, P. Wolski, Effect of hybrid method of excess sludge disintegration on the increase of their biodegradability, Environ. Prot. Eng., 39 (2013) 154–165 (in Polish).
  12. Zawieja, P. Wolski, The influence of chemical-thermal modification of excess sludge on the generation of volatile fatty acids in the methane fermentation process, Annu. Set Environ. Prot., 15 (2013) 2054–2070 (in Polish).
  13. K. Grübel, A. Machnicka, The influence of microwave radiation on activated sludge, Sci. Nat. Technol., 5 (2011) 67 (in Polish).
  14. W. Yawei, W. Yuansong, L. Junxin, Effect of H2O2 dosing strategy on sludge pretreatment by microwave-H2O2 advanced oxidation process, J. Hazard. Mater., 169 (2009) 680–684.
  15. J. Müller, G. Lehne, J. Schwedes, S. Battenberg, R. Näveke, J. Kopp, N. Dichtl, A. Scheminski, R. Krull, D.C. Hempel, Disintegration of sewage sludges and influence on anaerobic digestion, Water Sci. Technol., 38 (1998) 425–433.
  16. Y. Chen, B. Fu, Y. Wang, Q. Jiang, H. Liu, Reactor performance and bacterial pathogen removal in response to sludge retention time in a mesophilic anaerobic digester treating sewage sludge, Bioresour. Technol., 106 (2012) 20–26.
  17. I.A. Nges, J. Liu, Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions, Renewable Energy, 35 (2010) 2200–2206.
  18. L. Appels, J. Baeyens, J. Degrève, R. Dewil, Principles and potential of the anaerobic digestion of
    waste-activated sludge, Prog. Energy Combust. Sci., 34 (2008) 755–781.
  19. A. Gonzalez, A.T.W.M. Hendriks, J.B. van Lier, M. de Kreuk, Pre-treatments to enhance the biodegradability of waste activated sludge: elucidating the rate limiting step, Biotechnol. Adv., 36 (2018) 1434–1469.
  20. E. Chamarro, A. Marco, S. Esplugas, Use of Fenton reagent to improve organic chemical biodegradability, Water Res., 35 (2001) 1047–1051.
  21. M. Zieliński, M. Dębowski, M. Dudek, A. Grala, Effect of the application of advanced oxidation technology on the effectiveness of anaerobic treatment of wastewaters with a high concentration of formaldehyde, Arch. Environ. Prot., 39 (2013) 81–91.
  22. K. Michalska, K. Miazek, L. Krzystek, S. Ledakowicz, Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass, Bioresour. Technol., 119 (2012) 72–78.
  23. L. Ming-Chun, L. Chien-Jung, L. Chih-Hsiang, H. Rui-Yuan, T. Wang-Ping, Dewatering of activated sludge by Fenton’s reagent, Adv. Environ. Res., 7 (2003) 667–670.
  24. M. Dębowski, M. Krzemieniewski, M. Zieliński, Constant magnetic field influence on stabilization of excess sludge with Fenton’s reagent, Pol. J. Environ. Stud., 16 (2007) 43–50.
  25. M.I. Badawy, M.E.M. Ali, Fenton’s peroxidation and coagulation processes for the treatment of combined industrial and domestic wastewater, J. Hazard. Mater., 136 (2006) 961–966.
  26. M. Ksibi, Chemical oxidation with hydrogen peroxide for domestic wastewater treatment, Chem. Eng. J., 119 (2006) 161–165.
  27. C. Eskicioglu, A. Prorot, J. Marin, R.L. Droste, K.J. Kennedy, Synergetic pretreatment of sewage sludge by microwave irradiation in presence of H2O2 for enhanced anaerobic digestion, Water Res., 42 (2008) 4674–4682.
  28. Skoczko, J. Piekutin, N. Woronieckiej, P. Mielniczuk, Environmental Engineering – Young Eye, I. Skoczko, J. Piekutin, K. Kloza, Eds., Volume 31 Sewage and Sewage Sludge, Publishing House of Białystok University of Technology, Białystok, 2017 (in Polish).
  29. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  30. M. Dębowski, M. Krzemieniewski, M. Zieliński, Constant magnetic field influence on stabilization of excess sludge with Fenton’s reagent, Pol. J. Environ. Stud., 16 (2007) 43–50.
  31. M. Tokumura, M. Sekine, M. Yoshinari, H.T. Znad, Y. Kawase, Photo-Fenton process for excess sludge disintegration, Process Biochem., 42 (2007) 627–633.
  32. K. Michalska, K. Miazek, L. Krzystek, S. Ledakowicz, Influence of pretreatment with Fenton’s reagent on biogas production and methane yield from lignocellulosic biomass, Bioresour. Technol., 119 (2012) 72–78.
  33. B. Bień, J.D. Bień, Conditioning of sewage sludge with physical, chemical and dual methods to improve sewage sludge dewatering, Energies, 14 (2021) 5079, doi: 10.3390/en14165079.
  34. B. Bień, J.D. Bień, Dewatering of sewage sludge treated by the combination of ultrasonic field and chemical methods, Desal. Water Treat., 199 (2020) 72–78.
  35. Polish Standards PN-EN 12176, Charakterystyka Osadów Ściekowych, Oznaczanie Wartości pH, Wydawnictwo Normalizacyjne, Warszawa (in Polish).
  36. Polish Standards PN-75 C-04616/01, Woda i ścieki. Badania specjalne osadów. Oznaczanie zawartości wody, suchej masy, substancji organicznych i substancji mineralnych w osadach ściekowych, Wydawnictwo Normalizacyjne, Warszawa (in Polish).
  37. Polish Standards PN-91/C-04540/05, Water and Sewage. Testing of pH, Acidity and Alkalinity, Determination of pH, Acidity and Mineral and Total Alkalinity in Municipal Sewage Sludge, Publishing House, Warsaw (in Polish).
  38. Polish Standards PN-75/C-04616/04, Water and Sewage. Special Studies of Sediments, Determination of Volatile Fatty Acids in Sewage Sludge and Over-Sludge Water by Steam Distillation, Publishing House, Warsaw (in Polish).
  39. Polish Standards PN-73/C-04576/02, Water and Sewage. Tests for the Content of Nitrogen Compounds, Determination of Ammoniacal Nitrogen by Titration Method, Publishing House, Warsaw (in Polish).
  40. International Measurements Standards ISO 7027.
  41. Polish Standards PN-EN 13342, Characteristics of Sewage Sludge. Determination of Kjeldahl Nitrogen, Publishing House, Warsaw (in Polish).
  42. Polish Standards PN-75/C-04616/07, Water and Sewage. Special Tests of Sludge, Determination of the Fermentation Capacity of Sewage Sludge and the Degree of its Fermentation Under Static Conditions and in a Continuous Process, Publishing House, Warsaw (in Polish).
  43. J. Mrozowska, Laboratory of General and Environmental Microbiology, Publishing House of the Silesian University of Technology, Gliwice, 1999 (in Polish).
  44. M. Pawlaczyk-Szpilowa, Water and Wastewater Microbiology, PWN, Warsaw, 1982 (in Polish).
  45. S. Şahinkaya, E. Kalıpcı, S. Aras, Disintegration of waste activated sludge by different applications of Fenton process, Process Saf. Environ. Prot., 93 (2015) 274–281.
  46. C.C. Winterbourn, Chapter One – The Biological Chemistry of Hydrogen Peroxide, Methods in Enzymology, 528 (2013) 3–25.
  47. L. Ming-Chun, L. Chien-Jung, L. Chih-Hsiang, H. Rui-Yuan, T. Wang-Ping, Dewatering of activated sludge by Fenton’s reagent, Adv. Environ. Res., 7 (2003) 667–670.
  48. K. Grübel, M. Kuglarz, B. Mrowiec, J. Suschka, The use of preliminary hybrid hydrolysis of activated sludge to increase the efficiency of two-stage methane fermentation, Eng. Environ. Prot., 17 (2014) 55–268 (in Polish).
  49. I. Zawieja, M. Barański, M. Małkowski, Obtaining biogas in the process of anaerobic stabilization of thermally modified sewage sludge, Environ. Eng. Prot., 13 (2010) 185–196 (in Polish).
  50. A. Gonzalez, A.T.W.M. Hendriks, J.B. van Lier, M. de Kreuk, Pre-treatments to enhance the biodegradability of waste activated sludge: elucidating the rate limiting step, Biotechnol. Adv., 36 (2018) 1431–1469.
  51. K. Barbusiński, The Use of Fenton’s Reagent to Support Sludge Neutralization, Directions of Processing and Management of Sewage Sludge, Collective Work Edited By Z. Heidrich, Seidel- Przywecki Publishing House, 2010, pp. 97–107 (in Polish).
  52. S. Myszograj, Methane fermentation of thermochemically hydrolysed sewage sludge, Environ. Eng. Prot., 10 (2007) 141–152 (in Polish).
  53. E. Feki, A. Battimelli, S. Sayadi, A. Dhouib, S. Khoufi, High-rate anaerobic digestion of waste activated sludge by integration of electro-Fenton process, Molecules, 25 (2020) 626, doi: 10.3390/molecules25030626.