References

  1. C. Li, J. Li, N. Wang, Q. Zhao, P. Wang, Status of the treatment of produced water containing polymer in oilfields: a review, J. Environ. Chem. Eng., 9 (2021) 105303, doi: 10.1016/j.jece.2021.105303
  2. J. Li, Y. Xiong, X. Wang, F. Wang, S. Fang, M. Duan, Synthesis and flocculation of a novel flocculant for treating wastewater produced from polymer flooding, Environ. Technol., 42 (2021) 1715–1722.
  3. R.C.B. Lemos, E.B. da Silva, A. dos Santos, R.C.L. Guimarães, B.M.S. Ferreira, R.A. Guarnieri, C. Dariva, E. Franceschi, A.F. Santos, M. Fortuny, Demulsification of water-in-crude oil emulsions using ionic liquids and microwave irradiation, Energy Fuels, 24 (2010) 4439–4444.
  4. A.L. Garcia-Costa, A. Luengo, J.A. Zazo, J.A. Casas, Cutting oil–water emulsion wastewater treatment by microwave assisted catalytic wet peroxide oxidation, Sep. Purif. Technol., 257 (2021) 117940, doi: 10.1016/j.seppur.2020.117940.
  5. N. Saifuddin, K.H. Chua, Treatment of oily waste water emulsions from metallurgical industries using microwave irradiation, Biotechnology, 5 (2006) 308–314.
  6. N.N. Sun, H.Y. Jiang, Y.L. Wang, A.J. Qi, A comparative research of microwave, conventional-heating, and microwave/chemical demulsification of Tahe heavy-oil-in-water emulsion, SPE Prod. Oper., 33 (2018) 371–381.
  7. H.M. Cui, L.F. Ke, H.B. Qi, L.Y. Chen, The study on experiments of oilfield wastewater treatment by microwave-assisted demulsification, Adv. Mater. Res., 599 (2012) 516–520.
  8. N.H. Abdurahman, R.M. Yunus, N.H. Azhari, N. Said, Z. Hassan, The potential of microwave heating in separating water-in-oil (W/O) emulsions, Energy Procedia, 138 (2017) 1023–1028.
  9. D. Santos, E.C.L. da Rocha, R.L.M. Santos, A.J. Cancelas, E. Franceschi, A.F. Santos, M. Fortuny, C. Dariva, Demulsification of water-in-crude oil emulsions using single mode and multimode microwave irradiation, Sep. Purif. Technol., 189 (2017) 347–356.
  10. S. NaNa, L.H. Peng, H.Y. Jiang, Effect of inorganic salt concentration on microwave demulsification mechanism, Oil-Gas Field Surf. Eng., 32 (2013) 32–33.
  11. L. Xia, G. Cao, S. Lu, Q. Liu, S. Tong, Demulsification of solidsstabilized emulsions under microwave radiation, J. Macromol. Sci. Part A Pure Appl. Chem., 43 (2006) 71–81.
  12. F. Shehzad, I.A. Hussein, M.S. Kamal, W. Ahmad, A.S. Sultan, M.S. Nasser, Polymeric surfactants and emerging alternatives used in the demulsification of produced water: a review, Polym. Rev., 58 (2018) 63–101.
  13. C.A. Flores, E.A. Flores, E. Hernández, L.V. Castro, A. García, F. Alvarez, F.S. Vázquez, Anion and cation effects of ionic liquids and ammonium salts evaluated as dehydrating agents for super-heavy crude oil: experimental and theoretical points of view, J. Mol. Liq., 196 (2014) 249–257.
  14. A.M. Atta, H.A. Al-Lohedan, M.M.S. Abdullah, Dipoles poly(ionic liquids) based on
    2-acrylamido-2-methylpropane sulfonic acid-co-hydroxyethyl methacrylate for demulsification of crude oil water emulsions, J. Mol. Liq., 222 (2016) 680–690.
  15. R.L.M. Santos, E.B.M. Filho, R.S. Dourado, A.F. Santos, G.R. Borges, C. Dariva, C.C. Santana, E. Franceschi, D. Santos, Study on the use of aprotic ionic liquids as potential additives for crude oil upgrading, emulsion inhibition, and demulsification, Fluid Phase Equilib., 489 (2019) 8–15.
  16. M. Jabbari, Y. Izadmanesh, H. Ghavidel, Synthesis of ionic liquids as novel emulsifier and demulsifiers, J. Mol. Liq., 293 (2019) 111512, doi: 10.1016/j.molliq.2019.111512.
  17. A.A. Adewunmi, M.S. Kamal, Demulsification of water-in-oil emulsions using ionic liquids: effects of counterion and water type, J. Mol. Liq., 279 (2019) 411–419.
  18. C. Eskicioglu, N. Terzian, K.J. Kennedy, R.L. Droste, M. Hamoda, A thermal microwave effects for enhancing digestibility of waste activated sludge, Water Res., 41 (2007) 2457–2466.
  19. H. Cui, L. Fang, Q. Zenglu, L. Hongyan, Y. Zhongchen, Research progress of microwave-assisted oil extraction wastewater treatment technology, Ind. Water Wastewater, 46 (2015) 1–5. Available at https://kns.cnki.net/kcms/detail/34.1204.tq.20150925.1628.008.html
  20. S.-J. Zhang, M.-Y. Wang, B.-B. Liu, J.-S. Meng, D.-Y. Li, W. Tong, Preparation of macroporous magnetic particles for the treatment of wastewater containing emulsified oil, Sci. Adv. Mater., 11 (2019) 1299–1305.
  21. E. Vialkova, M. Zemlyanova, A. Pesheva, Effective sediment treatment of urban sewage by microwave radiation, Mater. Sci. Forum, 871 (2016) 223–232.
  22. J. Saien, S. Asadabadi, Alkyl chain length, counter anion and temperature effects on the interfacial activity of imidazolium ionic liquids: comparison with structurally related surfactants, Fluid Phase Equilib., 386 (2015) 134–139.
  23. A.G. Volkov, S. Paula, D.W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers, Bioelectrochem. Bioenerg., 42 (1997) 153–160.
  24. M.G. Freire, L.M.N.B.F. Santos, A.M. Fernandes, J.A.P. Coutinho, I.M. Marrucho, An overview of the mutual solubilities of water–imidazolium-based ionic liquids systems, Fluid Phase Equilib., 261 (2007) 449–454.
  25. N. Hazrati, A.A.M. Beigi, M. Abdouss, Demulsification of water in crude oil emulsion using long chain imidazolium ionic liquids and optimization of parameters, Fuel, 229 (2018) 126–134.
  26. F. Geng, J. Liu, L. Zheng, L. Yu, Z. Li, G. Li, C. Tung, Micelle formation of long-chain imidazolium ionic liquids in aqueous solution measured by isothermal titration microcalorimetry, J. Chem. Eng. Data, 55 (2009) 147–151.
  27. H. Sun, Q. Wang, X. Li, X. He, Novel polyether-polyquaternium copolymer as an effective reverse demulsifier for O/W emulsions: demulsification performance and mechanism, Fuel, 263 (2020) 116770, doi: 10.1016/j.fuel.2019.116770.