References
  -  J. Vymazal, Removal of nutrients in constructed wetlands for
    wastewater treatment through plant harvesting – biomass
    and load matter the most, Ecol. Eng., 155 (2020) 105962,
    doi: 10.1016/j.ecoleng.2020.105962. 
-  Q. Wang, C. Hernández-Crespo, M. Santoni, S. Van Hulle,
    D.P.L. Rousseau, Horizontal subsurface flow constructed
    wetlands as tertiary treatment: can they be an efficient barrier
    for microplastics pollution?, Sci. Total Environ., 721 (2020)
    137785, doi: 10.1016/j.scitotenv.2020.137785. 
-  S. Singh, S. Chakraborty, Zinc removal from highly acidic and
    sulfate-rich wastewater in horizontal sub-surface constructed
    wetland, Water Sci. Technol., 84 (2021) 3403–3414. 
-  C. Liu, Y. Liu, C. Feng, P. Wang, L. Yu, D. Liu, S. Sun, F. Wang,
    Distribution characteristics and potential risks of heavy metals
    and antimicrobial resistant Escherichia coli in dairy farm
    wastewater in Tai’an, China, Chemosphere, 262 (2021) 127768,
    doi: 10.1016/j.chemosphere.2020.127768. 
-  Z. Zeng, P. Zheng, D. Kang, Y. Li, W. Li, D. Xu, W. Chen,
    C. Pan, The removal of copper and zinc from swine wastewater
    by anaerobic biological-chemical process: performance and
    mechanism, J. Hazard. Mater., 401 (2021) 123767, doi: 10.1016/j.
    jhazmat.2020.123767. 
-  National Animal Husbandry Service, How to Scientifically
    Understand the Influence of the Trace Elements Copper and
  Zinc in Feed, 2020. Available at: https://www.piyao.org.cn/2020-12/15/c_1210932198.htm 
-  Y. Zhao, J.Q. Su, X.L. An, F.Y. Huang, C. Rensing, K.K. Brandt,
    Y.G. Zhu, Feed additives shift gut microbiota and enrich
    antibiotic resistance in swine gut, Sci. Total Environ., 621 (2018)
    1224–1232. 
-  J. Li, Y. Xu, L. Wang, F. Li, Heavy metal occurrence and risk
    assessment in dairy feeds and manures from the typical
    intensive dairy farms in China, Environ. Sci. Pollut. Res.,
    26 (2019) 6348–6358. 
-  Y. Xu, J. Li, Z. OU Yang, H. Zhang, Implications of feed mineral
    reduction and enhancement for China’s feed standards,
    Resour. Conserv. Recycl., 168 (2021) 105342, doi: 10.1016/j.resconrec.2020.105342. 
-  X. Chen, H. Lin, Y. Dong, B. Li, T. Yin, C. Liu, Simultaneous
    high-efficiency removal of sulfamethoxazole and zinc(II) from
    livestock and poultry breeding wastewater by a novel dualfunctional
    bacterium, Bacillus sp. SDB4, Environ. Sci. Pollut.
    Res. Int., 29 (2022) 6237–6250. 
-  J. Xu, G.H. Hao, Q. Jing, Y.Z. Zhai, Determination of Cu, Fe, Cr
    and Cd in wastewater from livestock and poultry farms, Agric.
    Environ. Dev., (2009) 74–75, 84. 
-  J. Zhang, Y. Wang, L. Ma, Y.L. Wen, S.Z. Chen, K.M. Yang,
    Z.J. Cai, Y.Q. Liao, Study on wastewater pollutant from planting
    and breeding recycled model, J. Southwest U Nationalities
    (Nat. Sci. Edit.), 37 (2011) 222–227. 
-  S.H. Ru, W.Q. Xu, S.Y. Sun, L.M. Hou, O.Y. Zhao, G.Y. Zhang,
    L. Wang, L. Liu, Distribution characteristics of nitrogen,
    phosphorus and heavy metals in intensive livestock and
    poultry wastewater in Hebei province, J. Hebei Agric. Sci.,
    25 (2021). 91–96. 
-  X. Liu, Y. Zhang, X. Li, C. Fu, T. Shi, P. Yan, Effects of influent
    nitrogen loads on nitrogen and COD removal in horizontal
    subsurface flow constructed wetlands during different growth
    periods of Phragmites australis, Sci. Total Environ., 635 (2018)
    1360–1366. 
-  H. Xiang, X.Y. Yu, Toxic effect of copper pollution on water and
    hydrophyte, Hunan Agric. Sci., 11 (2009) 54–56 (in Chinese). 
-  X.F. Wang, The dangers of copper ions on the environment
    and research on countermeasure, Territory Nat. Resour. Stud.,
    (2015) 55–57. 
-  B. Balen, M. Tkalec, S. Šikić, S. Tolić, P. Cvjetko, M. Pavlica,
    Ž. Vidaković-Cifrek, Biochemical responses of Lemna minor  experimentally exposed to cadmium and zinc, Ecotoxicology,
    20 (2011) 815–826. 
-  M.R. Broadley, P.J. White, J.P. Hammond, I. Zelko, A. Lux, Zinc
    in plants, New Phytol., 173 (2007) 677–702. 
-  C.M. Palmer, M.L. Guerinot, Facing the challenges of Cu, Fe and
    Zn homeostasis in plants, Nat. Chem. Biol., 5 (2009) 333–340. 
-  J. Wang, The Study of the Rhizosphere Microorganisms of
    Poyang Lake Wetland Plant Under Zinc and Lead Stress,
    Master Thesis, Nanchang University, 2012 (in Chinese). 
-  M. Wu, Effect of ZNO-NPs on the Seedling Growth and Zn
    Absorption and Distribution of Different Plants, Master Thesis,
  Northwest A&F University, 2018 (in Chinese). 
-  A. Daverey, Y.C. Chen, S. Sung, J.G. Lin, Effect of zinc on
    anammox activity and performance of simultaneous partial
    nitrification, anammox and denitrification (SNAD) process,
    Bioresour. Technol., 165 (2014) 105–110. 
-  A. Galletti, P. Verlicchi, E. Ranieri, Removal and accumulation
    of Cu, Ni and Zn in horizontal subsurface flow constructed
    wetlands: contribution of vegetation and filling medium, Sci.
    Total Environ., 408 (2010) 5097–5105. 
-  X. Zhang, Z. Chen, Y. Zhou, Y. Ma, C. Ma, Y. Li, Y. Liang,
    J. Jia, Impacts of the heavy metals Cu(II), Zn(II) and Fe(II)
    on an Anammox system treating synthetic wastewater in
    low ammonia nitrogen and low temperature: Fe(II) makes a
    difference, Sci. Total Environ., 648 (2019) 798–804. 
-  C.L. Madeira, J.C. de Araújo, Inhibition of anammox activity
    by municipal and industrial wastewater pollutants: a review, Sci. Total Environ., 799 (2021) 149449, doi: 10.1016/j.
  scitotenv.2021.149449. 
-  Y. Zhang, X. Liu, C. Fu, X. Li, B. Yan, T. Shi, Effect of Fe2+
    addition on chemical oxygen demand and nitrogen removal
    in horizontal subsurface flow constructed wetlands,
  Chemosphere, 220 (2019) 259–265. 
-  G.F. Yang, W.M. Ni, K. Wu, H. Wang, B.E. Yang, X.Y. Jia, R.C. Jin,
    The effect of Cu(II) stress on the activity, performance and
    recovery on the anaerobic ammonium-oxidizing (Anammox)
    process, Chem. Eng. J., 226 (2013) 39–45. 
-  J. Vymazal, P. Krása, Distribution of Mn, Al, Cu and Zn in a
    constructed wetland receiving municipal sewage, Water Sci.
    Technol., 48 (2003) 299–305. 
-  A. Sobolewsky, A review of processes responsible for metal
    removal in wetlands treating contaminated mine drainage,
    Int. J. Phytorem., 1 (1999) 19–51. 
-  G. Du Laing, G. Van Ryckegem, F.M.G. Tack, M.G. Verloo, Metal
    accumulation in intertidal litter through decomposing leaf
    blades, sheaths and stems of Phragmites australis, Chemosphere,
    63 (2006) 1815–1823. 
-  X. Zhang, Y. Zhou, N. Zhang, K. Zheng, L. Wang, G. Han,
    H. Zhang, Short-term and long-term effects of Zn(II) on the
    microbial activity and sludge property of partial nitrification
    process, Bioresour. Technol., 228 (2017) 315–321. 
-  S. Gilch, O. Meyer, I. Schmidt, A soluble form of ammonia
    monooxygenase in Nitrosomonas europaea, Biol. Chem.,
    390 (2019) 863–873. 
-  S. Lee, K. Cho, J. Li, W. Kim, S. Hwang, Acclimation and activity
    of ammonia-oxidizing bacteria with respect to variations in
    zinc concentration, temperature, and microbial population,
    Bioresour. Technol., 102 (2011) 4196–4203. 
-  H. Zhu, B. Yan, Y. Xu, J. Guan, S. Liu, Removal of nitrogen
    and COD in horizontal subsurface flow constructed wetlands
    under different influent C/N ratios, Ecol. Eng., 63 (2014) 58–63. 
-  Q. Guo, Z.J. Shi, J.L. Xu, C.C. Yang, M. Huang, M.L. Shi, R.C. Jin,
    Inhibition of the partial nitritation by roxithromycin and Cu(II),
    Bioresour. Technol., 214 (2016) 253–258. 
-  L.H. Madkour, Function of reactive oxygen species (ROS)
    inside the living organisms and sources of oxidants, Pharm. Sci.
    Anal. Res. J., 2 (2019) 180023. 
-  G.R. Rout, P. Das, Effect of metal toxicity on plant growth and
    metabolism: I. Zinc, Sustainable Agric., (2009) 873–884. 
-  M.L. Otte, C.C. Kearns, M.O. Doyle, Accumulation of arsenic
    and zinc in the rhizosphere of wetland plants, Bull. Environ.
    Contam. Toxicol., 55 (1995) 154–161. 
-  M. McBride, S. Sauve, W. Hendershot, Solubility control of Cu,
    Zn, Cd and Pb in contaminated soils, Eur. J. Soil Sci., 48 (1997)
    337–346. 
-  X. Xu, G.L. Mills, Do constructed wetlands remove metals or
    increase metal bioavailability?, J. Environ. Manage., 218 (2018)
    245–255. 
-  R.D. Hauck, Atmospheric Nitrogen Chemistry, Nitrification,
    Denitrification, and Their Relationships, O. Hutzinger, Ed.,
    The Handbook of Environmental Chemistry, Vol. 1. Part
    C, The Natural Environment and Biogeochemical Cycles,
    Springer-Verlag, Berlin, 1984, pp. 105–127. 
-  I. Burth, J.C.G. Ottow, Influence of pH on the Production
    of N₂O and N₂ by Different Denitrifying Bacteria and
    Fusarium Solani, Ecological Bulletins, No. 35, Environmental
    Biogeochemistry, Oikos Editorial Office, 1983, pp. 207–215. 
-  A. Princic, I. Mahne, F. Megušar, E.A. Pau, J.M. Tiedje, Effects
    of pH and oxygen and ammonium concentrations on the
    community structure of nitrifying bacteria from wastewater,
    Appl. Environ. Microbiol., 64 (1998) 3584–3590. 
-  H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang,
    N. Lin, Y. Qi, Adsorption characteristics and behaviors of
    graphene oxide for Zn(II) removal from aqueous solution,
    Appl. Surf. Sci., 279 (2013) 432–440. 
-  J. Liang, Z. Yang, L. Tang, G. Zeng, M. Yu, X. Li, H. Wu, Y. Qian,
    X. Li, Y. Luo, Changes in heavy metal mobility and availability
    from contaminated wetland soil remediated with combined
  biochar-compost, Chemosphere, 181(2017) 281–288.