References

  1. Y.C. Lu, J.H. Mao, W. Zhang, C. Wang, M. Cao, X.D. Wang, K.Y. Wang, X.H. Xiong, A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano-polymers, Chemosphere, 238 (2020) 124640, doi: 10.1016/j.chemosphere.2019.124640.
  2. H.L. So, K.Y. Lin, W. Chu, Triclosan removal by heterogeneous Fenton-like process: studying the kinetics and surface chemistry of Fe3O4 as catalyst, J. Environ. Chem. Eng., 7 (2019) 103432, doi: 10.1016/j.jece.2019.103432.
  3. P.R. Teixeira, T.R. Machado, F. Machado, F.F. Sodré, J.G. Silva, B.A.D. Neto, L.G. Paterno, Au nanoparticle-poly(ionic liquid) nanocomposite electrode for the voltammetric detection of triclosan in lake water and toothpaste samples, Microchem. J., 152 (2020) 104421, doi: 10.1016/j.microc.2019.104421.
  4. Y. Lin, X. Jin, G. Owens, Z. Chen, Simultaneous removal of mixed contaminants triclosan and copper by green synthesized bimetallic iron/nickel nanoparticles, Sci. Total Environ., 695 (2019) 133878, doi: 10.1016/j.scitotenv.2019.133878.
  5. J. Lu, Z. Guo, S. Wang, M. Li, N. Wang, L. Zhou, H. Wu, J. Zhang, Remove of triclosan from aqueous solutions by nanoflower MnO2: insight into the mechanism of oxidation and adsorption, Chem. Eng. J., 426 (2021) 131319, doi: 10.1016/j.cej.2021.131319.
  6. L.A. González-Fernández, N.A. Medellín-Castillo, R. Ocampo-Pérez, H. Hernández-Mendoza,
    M.S. Berber-Mendoza, C. Aldama-Aguilera, Equilibrium and kinetic modelling of triclosan adsorption on single-walled carbon nanotubes, J. Environ. Chem., 9 (2021) 106382, doi: 10.1016/j.jece.2021.106382.
  7. S.K. Behera, S. Oh, H. Park, Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid, J. Hazard. Mater., 179 (2010) 684–691.
  8. M. Triwiswara, C. Lee, J. Moon, S. Park, Adsorption of triclosan from aqueous solution onto char derived from palm kernel shell, Desal. Water Treat., 177 (2020) 71–79.
  9. E.-J. Cho, J.-K. Kang, J.-K. Moon, B.-H. Um, C.-G. Lee, S. Jeong, S.-J. Park, Removal of triclosan from aqueous solution via adsorption by kenaf-derived biochar: its adsorption mechanism study via spectroscopic and experimental approaches, J. Environ. Chem. Eng., 9 (2021) 106343, doi: 10.1016/j.jece.2021.106343.
  10. E. Cho, J. Moon, C. Lee, S. Park, Removal of triclosan from aqueous solution using biochar derived from seed shell of Aesculus turbinata, Desal. Water Treat., 266 (2022) 256–267.
  11. J.-K. Kang, E.-J. Seo, C.-G. Lee, J.-K. Moon, S.J. Park, Effectivity and adsorption mechanism of food waste biochar for triclosan removal: a spectroscopic and experimental approach, Biomass Convers. Biorefin., (2021), doi: 10.1007/s13399-021-01997-7.
  12. D. Naghipour, K. Taghavi, M. Ashournia, J. Jaafari, R.A. Movarrekh, A study of Cr(VI) and NH4+ adsorption using greensand (glauconite) as a low-cost adsorbent from aqueous solutions, Water Environ. J., 34 (2020) 45–56.
  13. D. Naghipour, L. Hoseinzadeh, K. Taghavi, J. Jaafari, Characterization, kinetic, thermodynamic and isotherm data for diclofenac removal from aqueous solution by activated carbon derived from pine tree, Data Brief, 18 (2018) 1082–1087.
  14. X. Hu, Z. Cheng, Z. Sun, Adsorption of diclofenac and triclosan in aqueous solution by purified multi-walled carbon nanotubes, Pol. J. Environ. Stud., 26 (2017) 87–95.
  15. V. Krstić, T. Urosević, B. Pesovski, A review on adsorbents for treatment of water and wastewaters containing copper ions, Chem. Eng. Sci., 192 (2018) 273–287.
  16. D.P. Mohapatra, D.M. Kirpalani, Advancement in treatment of wastewater: fate of emerging contaminants, Can. J. Chem. Eng., 97 (2019) 2621–2631.
  17. L.F. Cusioli, H.B. Quesada, A.L.B.P. Castro, R.G. Gomes, R. Bergamasco, Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water, Chemosphere, 247 (2020) 125852, doi: 10.1016/j.chemosphere.2020.125852.
  18. S. Sun, J. Zhu, Z. Zheng, J. Li, M. Gan, Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption, Powder Technol., 342 (2019) 181–192.
  19. S.S. Fiyadh, M.A. Alsaadi, W.Z. Jaafar, M.K. Alomar, S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotube, J. Cleaner Prod., 230 (2019) 783–793.
  20. T. Du, L.-F. Zhou, Q. Zhang, L.-Y. Liu, L. Wen-Bin, H.-K. Liu, Mesoporous structured aluminaosilicate with excellent adsorption performances for water purification, Sustainable Mater.Technol., 18 (2018) e00080, doi: 10.1016/j.susmat.2018.e00080.
  21. N. Eroglu, M. Emekci, C.G. Athanassiou, Applications of natural zeolites on agriculture and food production, J. Sci. Food Agric., 97 (2017) 3487–3499.
  22. N. Rajic, D. Stojakovic, N. Daneu, A. Recnik, The formation of oxide nanoparticles on the surface of natural clinoptilolite, J. Phys. Chem. Solids, 72 (2011) 800–803.
  23. A. Ates, The modification of aluminium content of natural zeolites with different composition, Powder Technol., 344 (2019) 199–207.
  24. N.K.E.M. Khori, T. Hadibarata, M. Elshikh, A.A. Al-Ghamdi, Salmiati, Z. Yusop, Triclosan removal by adsorption using activated carbon derived from waste biomass: isotherms and kinetic studies, J. Chin. Chem. Soc., 65 (2018) 951–959.
  25. S. Lagergren, Zur theorie der sogenannten adsorption gelster stoffe, Kungliga Svenska Vetenskapsakademiens, Handlingar, 24 (1898) 1–39.
  26. Y.S. Ho, G. Mckay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76 (1998) 822–827.
  27. C. Lei, Y. Hu, M. He, Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide (CPB) modified zeolites, Chem. Eng. J., 219 (2013) 361–370.
  28. H.N. Tran, S. You, A. Hosseini-Bandegharaei, H. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  29. F.T. Ramos, O.L.S. Weber, E.B. Morais, E.F.G.C. Dores, Z.M. Lima, J.M.P. Novais, Physical, chemical, and microbiological evaluation of a compost conditioned with zeolites, Afr. J. Agric. Res., 13 (2018) 664–672.
  30. Z. Tisler, J. Horacek, J. Safar, R. Velvarska, L. Poliskova, J. Kocik, Y. Gherib, K. Marklova, R. Bulanek, D. Kubicka, Clinoptilolite foams prepared by alkali activation of natural zeolite and their post-synthesis modifications, Microporous Mesoporous Mater., 282 (2019) 169–178.
  31. D. Mantovani, H.B. Quesada, R.S. Antônio, L.F. Cusioli, L. Nishi, A. Diório, P.F. Soares, R. Bergamasco, M.F. Vieira, Adsorption of methylene blue from effluent using golden mussel (Limnoperna fortunei) shell as a low-cost material, Desal. Water Treat., 188 (2020) 232–238.
  32. C.S.T. Araújo, V.N. Alves, H.C. Rezende, I.L.S. Almeida, R.M.N. Assunção, C.R.T. Tarley, M.G. Segatelli, N.M.M. Coelho, Characterization and use of Moringa oleifera seeds as biosorbent for removing metal ions from aqueous effluents, Water Sci. Technol., 62 (2010) 2198–2203.
  33. H. Kaur, G. Hippargi, G.R. Pophali, A. Bansiwal, Biomimetic lipophilic activated carbon for enhanced removal of triclosan from water, J. Colloid Interface Sci., 535 (2019) 111–121.
  34. J.E. da Silva, F.I.L. Rodrigues, S.N. Pacífico, L.F. Santiago, C.R. Muniz, G.D. Saraiva, R.F. do Nascimento,
    V. de O. Sousa Neto, Estudo de Cinética e Equilíbrio de Adsorção Empregando a Casca do Coco Modificada Quimicamente para a Remoção de Pb(II) de Banho Sintético, Rev. Virtual Quim., 10 (2018).
  35. M. Triwiswara, C. Lee, J. Moon, S. Park, Adsorption of triclosan from aqueous solution onto char derived from palm kernel shell, Desal. Water Treat., 177 (2020) 71–79.
  36. R.F. Nascimento, A.C.A. Lima, C.B. Vidal, D.Q. Melo, G.S.C. Raulino, Adsorção: aspectos teóricos e aplicações ambientais, Fortaleza, 2020.
  37. V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  38. G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18 (1984) 1501–1507.
  39. R.M. Karthik, L. Philip, Removal and risk assessment of pharmaceuticals and personal care products in a decentralized greywater treatment system serving an Indian rural community, J. Environ. Chem. Eng., 9 (2021) 106832, doi: 10.1016/j.jece.2021.106832.
  40. I.M. Reck, R.M. Paixão, R. Bergamasco, M.F. Vieira, A.M.S. Vieira, Characterization and use of Moringa oleifera seeds as biosorbent for removing metal ions from aqueous effluents, J. Cleaner Prod., 171 (2018) 85–97.
  41. Y. Li, P. Bai, Y. Yan, W. Yan, W. Shi, R. Xu, Removal of Zn2+, Pb2+, Cd2+, and Cu2+ from aqueous solution by synthetic clinoptilolite, Microporous Mesoporous Mater., 279 (2019) 203–211.