References
  -  H.C. Hong, F.Q. Huang, F.Y. Wang, L.X. Ding, H.J. Lin, Y. Liang,
    Properties of sediment NOM collected from a drinking water
    reservoir in South China, and its association with THMs and
    HAAs formation, J. Hydrol., 476 (2013) 274–279. 
-  W. Ahmed, M. Kitajima, S. Tandukar, E. Haramoto, Recycled
    water safety: current status of traditional and emerging viral
    indicators, Curr. Opin. Environ. Sci. Health, 16 (2020) 62–72. 
-  L. Alexandrou, B.J. Meehan, O.A.H. Jones, Regulated and
    emerging disinfection by-products in recycled waters,
    Sci. Total Environ., 637 (2018) 1607–1616. 
-  H.C. Hong, Y.C. Lu, X.Y. Zhu, Q. Wu, L.G. Jin, Z.G. Jin, X.X. Wei,
    G.C. Ma, H.Y. Yu, Cytotoxicity of nitrogenous disinfection
    by-products: a combined experimental and computational
    study, Sci. Total Environ., 856 (2023) 159273, doi: 10.1016/j.scitotenv.2022.159273. 
-  X. Wei, M. Yang, Q. Zhu, E.D. Wagner, M.J. Plewa,
    Comparative quantitative toxicology and QSAR modeling
    of the haloacetonitriles: forcing agents of water disinfection
    by-product toxicity, Environ. Sci. Technol., 54 (2020) 8909–8918. 
-  M.T. Yang, X.R. Zhang, Comparative developmental toxicity
    of new aromatic halogenated DBPs in a chlorinated saline
    sewage effluent to the marine polychaete Platynereis dumerilii,
    Environ. Sci. Technol., 47 (2013) 10868–10867. 
-  J.L. Lin, A.R. Ika, Minimization of halogenated DBP precursors
    by enhanced PACl coagulation: the impact of organic
    molecule fraction changes on DBP precursors destabilization
    with Al hydrates, Sci. Total Environ., 703 (2020) 134936,
    doi: 10.1016/j.scitotenv.2019.134936. 
-  R.K. Padhi, S. Subramanian, K.K. Satpathy, Formation,
	  distribution, and speciation of DBPs (THMs, HAAs, ClO2− and
	  ClO3−sup>) during treatment of different source water with chlorine
    and chlorine dioxide, Chemosphere, 218 (2019) 540–550. 
-  R. Mompremier, Ó.A.F.Mariles, J.E.B. Bravo, K. Ghebremichael,
    Study of the variation of haloacetic acids in a simulated water
    distribution network, Water Supply, 19 (2019) 88–96. 
-  N. Beauchamp, C. Bouchard, C. Dorea, M. Rodriguez,
    Ultraviolet absorbance monitoring for removal of DBPprecursor
    in waters with variable quality: enhanced coagulation
    revisited, Sci. Total Environ., 717 (2020) 137225, doi: 10.1016/j.scitotenv.2020.137225. 
-  A.Z. Li, X. Zhao, R. Mao, H.J. Liu, J.H. Qu, Characterization
    of dissolved organic matter from surface waters with low to
    high dissolved organic carbon and the related disinfection
    by-product formation potential, J. Hazard. Mater., 271 (2014)
    228–235. 
-  B. Ramavandi, S. Farjadfar, M. Ardjmand, S. Dobaradaran,
    Effect of water quality and operational parameters on
    trihalomethane formation potential in Dez River water, Iran,
    Water Resour. Ind., 11 (2015) 1–12. 
-  Y.M. Zhao, F. Xiao, D.S. Wang, M.Q. Yan, Z. Bi, Disinfection
    by-product precursor removal by enhanced coagulation
    and their distribution in chemical fractions, J. Environ. Sci.,
    25 (2013) 2207–2213. 
-  D.S. Wang, Y.M. Zhao, M.Q. Yan, C.W.K. Chow, Removal of
    DBP precursors in micro-polluted source waters: a comparative
    study on the enhanced coagulation behavior, Sep. Purif.
    Technol., 118 (2013) 271–278. 
-  X.M. Sun, C.Y. Wu, Y.X. Zhou, W. Han, Using DOM fraction
    method to investigate the mechanism of catalytic ozonation
    for real wastewater, Chem. Eng. J., 369 (2019) 100–108. 
-  W. Chen, N. Habibul, X.Y. Liu, G.P. Sheng, H.Q. Yu, FTIR and
    synchronous fluorescence heterospectral two-dimensional
    correlation analyses on the binding characteristics of copper
    onto dissolved organic matter, Environ. Sci. Technol., 49 (2015)
    2052–2058. 
-  P. Rakruam, S. Wattanachira, Reduction of DOM fractions
    and their trihalomethane formation potential in surface
    river water by in-line coagulation with ceramic membrane
    filtration, J. Environ. Sci., 26 (2014) 529–536. 
-  C.J. Williams, D. Conrad, D.N. Kothawala, H.M. Baulch,
    Selective removal of dissolved organic matter affects the
    production and speciation of disinfection by-products,
    Sci. Total Environ., 652 (2019) 75–84. 
-  M.A. Zazouli, S. Nasseri, A.H. Mahvi, A.R. Mesdaghinia,
    M. Younecian, M. Gholami, Determination of hydrophobic and
    hydrophilic fractions of natural organic matter in raw water
    of Jalalieh and Tehranspars water treatment plants (Tehran),
    J. Appl. Sci., 7 (2007) 2651–2655. 
-  J.N. Song, X. Jin, X.C. Wang, P.K. Jin, Preferential binding
    properties of carboxyl and hydroxyl groups with aluminium
    salts for humic acid removal, Chemosphere, 234 (2019) 478–487. 
-  D.F. Ma, B.Y. Gao, C.F. Xia, Y. Wang, Q.Y. Yue, Q. Li, Effects
    of sludge retention times on reactivity of effluent dissolved
    organic matter for trihalomethane formation in hybrid
    powdered activated carbon membrane bioreactors, Bioresour.
    Technol., 166 (2014) 381–388. 
-  Q. Han, H. Yan, F. Zhang, N. Xue, Y. Wang, Y.B. Chu,
    B.Y. Gao, Trihalomethanes (THMs) precursor fractions removal
    by coagulation and adsorption for bio-treated municipal
    wastewater: molecular weight, hydrophobicity/hydrophily
    and fluorescence, J. Hazard. Mater., 297 (2015) 119–126. 
-  B. Bruijns, R. Tiggelaar, H. Gardeniers, Dataset of the absorption,
    emission and excitation spectra and fluorescence intensity
    graphs of fluorescent cyanine dyes for the quantification
    of low amounts of dsDNA, Data Brief, 10 (2016) 132–143. 
-  S.B. Marina, E. Saioa, C.B. Yannick, A.G. Ryder, Investigating
    native state fluorescence emission of Immunoglobulin G using
    polarized excitation-emission matrix (pEEM) spectroscopy
    and PARAFAC, Chemom. Intell. Lab. Syst., 185 (2019) 1–11. 
-  P.K. Jin, J.N. Song, X.C. Wang, X. Jin Two-dimensional
    correlation spectroscopic analysis on the interaction between
    humic acids and aluminum coagulant, J. Environ. Sci., 64 (2018)
    181–189. 
-  L.C. Hua, S.J. Chao, C. Huang, Fluorescent and molecular
    weight dependence of THM and HAA formation from
    intracellular algogenic organic matter (IOM), Water Res.,
    148 (2019) 231–238. 
-  G. Korshin, C.W.K. Chow, R. Fabris, M. Drikas, Absorbance
    spectroscopy-based examination of effects of coagulation
    on the reactivity of fractions of natural organic matter with
    varying apparent molecular weights, Water Res., 43 (2009)
    1541–1548. 
-  M.S. Siddique, X.J. Xiong, H.K. Yang, T. Maqbool, N. Graham,
    W.Z. Yu, Dynamic variations in DOM and DBPs formation
    potential during surface water treatment by ozonationnanofiltration:
    using spectroscopic indices approach, Chem.
    Eng. J., 427 (2022) 132010, doi: 10.1016/j.cej.2021.132010. 
-  A. Sardana, B. Cottrell, D. Soulsby, T.N. Aziz, Dissolved
    organic matter processing and photoreactivity in a wastewater
    treatment constructed wetland, Sci. Total Environ., 648 (2019)
    923–934. 
-  Z.P. Liu, W.H. Wu, P. Shi, J.S. Guo, J. Cheng, Characterization
    of dissolved organic matter in landfill leachate during the
    combined treatment process of air stripping, Fenton, SBR and
    coagulation, Waste Manage., 41 (2015) 111–118. 
-  Y.X. Sun, Q.Y. Wu, H.Y. Hu, J. Tian, Effects of operating
    conditions on THMs and HAAs formation during wastewater
    chlorination, J. Hazard. Mater., 168 (2009) 1290–1295. 
-  N. Beauchamp, C. Bouchard, C. Dorea, M. Rodriguez,
    Ultraviolet absorbance monitoring for removal of DBPprecursor
    in waters with variable quality: enhanced coagulation
    revisited, Sci. Total Environ., 717 (2020) 137225, doi: 10.1016/j.scitotenv.2020.137225. 
-  J.Y. Jiang, X.R. Zhang, X.H. Zhu, Y. Li, Removal of intermediate
    aromatic halogenated DBPs by activated carbon adsorption:
    a new approach to controlling halogenated DBPs in
    chlorinated drinking water, Environ. Sci. Technol., 51 (2017)
    3435–3444. 
-  L.C. Hua, S.J. Chao, K. Huang, C. Huang, Characteristics of
    low and high SUVA precursors: relationships among molecular
    weight, fluorescence, and chemical composition with DBP
    formation, Sci. Total Environ., 727 (2020) 138638, doi: 10.1016/j.scitotenv.2020.138638.