References

  1. D.M. Ren, Q.X. Yu, Y. Zhao, Q.W. Ai, Y.L. Wu, Y. Zhao, Research progress of physical method for removing Rhodamine B from wastewater, J. Bohai Univ., Nat. Sci. Ed., 41 (2020) 97–104.
  2. L. Zhong, J.J. Chen, Technical progress in organic effluent water treatment by advanced oxidation processes, Ind. Water Treat. (TianJin, China), 1 (2002) 1–5.
  3. Z.J. Guan, H.Y. Huang, Progress in the degradation of organic matter by activated persulfate from polymetallic iron oxides, Appl. Chem. Ind. (Xi’an, China), 50 (2021) 1049–1055.
  4. R. Yang, The Study of Rhodamine B Degradation by Fenton and Activated Persulfate Process, Xi’an University of Architecture and Technology, 2015.
  5. Z.P. Yang, X.T. Lv, X.Q. Liu, S.M. Jia, Y.Y. Zhang, Y.Y. Yu, C.J. Zhang, D.D. Liu, Sieve-like CNT film coupled with TiO2 nanowire for high-performance continuous-flow photodegradation of Rhodamine B under visible light irradiation, Nanomaterials, 11 (2021) 1335, doi: 10.3390/nano11051335.
  6. Y.P. Cui, Z.W. Zhou, Y. Gao, L.D. Lei, J.G. Cao, R.J. Wu, L.L. Liang, Z.Q. Huang, Energy saving intermittent electro- Fenton system combined with commercial MoS2 for effective Rhodamine B degradation, J. Cleaner Prod., 289 (2021) 125807, doi: 10.1016/j.jclepro.2021.125807.
  7. Y. Liang, H.T. Ren, J. Han, H. Li, J.W. Liu, Study on the photodegradation of Rhodamine B by Mn2+/Fe2+ and SO32–/Fe2+ homogeneous systems, New Chem. Mater., 48 (2020) 209–213.
  8. H.Z. Wang, W.Q. Guo, N.Q. Ren, Development and application of biochar-based metal-free persulfate activators, Acta Sci. Circum., 40 (2020) 3582–3589.
  9. A.H. Cheng, W.C. Ma, Z. Xu, Treatment of phenol wastewater with persulfate activated by plasma-modified sponge iron, Chem. Ind. Eng. Prog., 39 (2020) 798–804.
  10. H.D. Xu, Y.C. Zhang, J.J. Li, Q.Q. Hao, X. Li, F.H. Liu, Heterogeneous activation of peroxymonosulfate by a biocharsupported Co3O4 composite for efficient degradation of chloramphenicols, Environ. Pollut., 257 (2020) 113610, doi: 10.1016/j.envpol.2019.113610.
  11. J.L. Ding, W.H. Xu, S.B. Liu, Y.G. Liu, X.F. Tan, X. Li, Z.W. Li, P. Zhang, L. Du, M.F. Li, Activation of persulfate by nanoscale zero-valent iron loaded porous graphitized biochar for the removal of 17β-estradiol: synthesis, performance and mechanism, J. Colloid Interface Sci., 588 (2021) 776–786.
  12. H. Qu, L. Chen, F.J. Yang, J.W. Zhu, C.D. Qi, G.L. Peng, Synthesis of an environmentally friendly modified mulberry branchderived biochar composite: high degradation efficiency of BPA and mitigation of toxicity in silkworm larvae, Int. J. Mol. Sci., 24 (2023) 3609, doi: 10.3390/ijms24043609.
  13. S.F. Jiang, L.L. Ling, W.J. Chen, W.J. Liu, D.C. Li, H. Jiang, High efficient removal of Bisphenol A in a peroxymonosulfate/iron functionalized biochar system: mechanistic elucidation and quantification of the contributors, Chem. Eng. J., 359 (2019) 572–583.
  14. H.C. Fu, P. Zhao, S.J. Xu, G. Cheng, Z.Q. Li, Y. Li, K. Li, S.L. Ma, Fabrication of Fe3O4 and graphitized porous biochar composites for activating peroxymonosulfate to degrade p-hydroxybenzoic acid: insights on the mechanism, Chem. Eng. J., 375 (2019) 121980, doi: 10.1016/j.cej.2019.121980.
  15. F.L. Shao, Y.J. Wang, Y.R. Mao, T. Shao, J.G. Shang, Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate, Chemosphere, 261 (2020) 127844, doi: 10.1016/j.chemosphere.2020.127844.
  16. H.H. Lyu, B. Gao, F. He, A.R. Zimmerman, C. Ding, J.C. Tang, J.C. Crittenden, Experimental and modeling investigations of ball-milled biochar for the removal of aqueous methylene blue, Chem. Eng. J., 335 (2018) 110–119.
  17. H.R. Hao, Q. Zhang, Y. Qiu, L. Meng, X.N. Wei, W.J. Sang, J.W. Tao, Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: synergism between Fe and Mn, J. Water Process Eng., 37 (2020) 101470, doi: 10.1016/j.jwpe.2020.101470.
  18. J. Xu, X.L. Zhang, C. Sun, H. He, Y.X. Dai, S.G. Yang, Y.S. Lin, X.H. Zhan, Q. Li, Y. Zhou, Catalytic degradation of diatrizoate by persulfate activation with peanut shell biochar-supported nano zero-valent iron in aqueous solution, Int. J. Environ. Res. Public Health, 15 (2018) 1937, doi: 10.3390/ijerph15091937.
  19. A. Ikhlaq, H.Z. Anwar, F. Javed, S. Gull, Degradation of safranin by heterogeneous Fenton processes using peanut shell ash-based catalyst, Water Sci. Technol., 79 (2019) 1367–1375.
  20. Q. An, C.L. Liu, S.M. Deng, Y.X. Jiao, M. Tang, M.L. Yang, Z.H. Ye, B. Zhao, Resource utilization of agricultural waste: converting peanut shell into an efficient catalyst in persulfate activation for degradation of organic pollutant, Chemosphere, 304 (2022) 135308, doi: 10.1016/j.chemosphere.2022.135308.
  21. L. Shi, L. Liang, J. Ma, F.X. Wang, J.M. Sun, Remarkably enhanced photocatalytic activity of ordered mesoporous carbon/g-C3N4 composite photocatalysts under visible light, Dalton Trans., 43 (2014) 7236–7244.
  22. M. Muttakin, S. Mitra, K. Thu, K. Ito, B.B. Saha, Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms, Int. J. Heat Mass Transfer, 122 (2018) 795–805.
  23. J. Wang, Study on Treatment of Refractory Organic Wastewater by Persulfate Activated by Iron Based Sludge-derived Biochar, Huazhong University of Science and Technology, 2017.
  24. C.J. Liang, Y.Y. Guo, Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate, Environ. Sci. Technol., 44 (2010) 8203–8208.
  25. D.O. Yang, J.C. Yan, L.B. Qian, Y. Chen, L. Han, A.Q. Su, W.Y. Zhang, H. Ni, M.F. Chen, Degradation of 1,4-dioxane by biochar supported nano magnetite particles activating persulfate, Chemosphere, 184 (2017) 609–617.
  26. Z.Y. Dong, Q. Zhang, B.Y. Chen, J.M. Hong, Oxidation of Bisphenol A by persulfate via Fe3O4-α-MnO2 nanoflower-like catalyst: mechanism and efficiency, Chem. Eng. J., 357 (2019) 337–347.
  27. J.G. Kim, S.M. Park, M.E. Lee, E.E. Kwon, K. Baek, Photocatalytic co-oxidation of As(III) and Orange G using urea-derived g-C3N4 and persulfate, Chemosphere, 212 (2018) 193–199.
  28. C. Cai, L.G. Wang, H. Gao, L.W. Hou, H. Zhang, Ultrasound enhanced heterogeneous activation of peroxydisulfate by bimetallic Fe-Co/GAC catalyst for the degradation of Acid Orange 7 in water, J. Environ. Sci. (China), 26 (2014) 1267–1273.
  29. D.A. House, Kinetics and mechanism of oxidations by peroxydisulfate, Chem. Rev., 62 (1961) 185–203.
  30. B.Q. Su, Y.Q. Liu, Y.T. Lin, J. Wang, X.H. Quan, R. Li, C.X. Rui, Simultaneous removal of norfloxacin and Pb(II) via Fe3O4-activated persulfate oxidation, China Environ. Sci., 42 (2022) 717–727.
  31. T. Taghipour, G.R. Karimipour, M. Ghaedi, M.R. Rahimi, S. Mosleh, Sonophotocatalytic treatment of diazinon using visible light-driven Ce:Cu-1,4-BDOAH2 photocatalyst in a batch-mode process: response surface methodology and optimization, Appl. Organomet. Chem., 32 (2018) e3962, doi: 10.1002/aoc.3962.
  32. S.H. Do, Y.J. Kwon, S.H. Kong, Effect of metal oxides on the reactivity of persulfate/Fe(II) in the remediation of dieselcontaminated soil and sand, J. Hazard. Mater., 182 (2010) 933–936.
  33. Q. Zhang, C.F.Y. Xie, Y. Qiu, M. Li, Z.X. Fan, L.Q. Wang, Durable degradation of orange G using persulfate activated by sludgederived heterogeneous catalyst, China Environ. Sci., 39 (2019) 3879–3886.
  34. X.G. Gu, S. Lv, Z.X. Qiu, Q. Sui, K. Lin, Y. Liu, Oxidation of 1,1,1-trichloroethane in aqueous and slurry systems by thermally activated persulfate, Acta Sci. Circum., 32 (2012) 1374–1380.
  35. J. Leichtweis, S. Silvestri, E. Carissimi, New composite of pecan nutshells biochar-ZnO for sequential removal of Acid red 97 by adsorption and photocatalysis, Biomass Bioenergy, 140 (2020) 105648, doi: 10.1016/j.biombioe.2020.105648.
  36. H. Jaberi, S. Mosleh, K. Dashtian, Development of cigarette carbonaceous hydrochar/ZIF-67-based fluids for CO22 capture from a gas stream in a packed column: mass-transfer performance evaluation, Energy Fuels, 34 (2020) 7295–7306.
  37. B. Jafari, M.R. Rahimi, M. Gheadi, K. Dashtian, S. Mosleh, CO2 capture by amine-based aqueous solution containing atorvastatin functionalized mesocellular silica foam in a counter-current rotating packed bed: central composite design modeling, Chem. Eng. Res. Des., 129 (2018) 64–74.
  38. A. Puri, D. Dev, D.N. Prasad, S. Hira, R. Sharma, Modified okra gum with silica: a novel superdisintegrant for fast disintegrating tablet, J. Drug Deliv. Therapeutics, 9 (2019) 206–211.
  39. T. Chen, Z.Y. Zhou, S. Xu, H.T. Wang, W.J. Lu, Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge, Bioresour. Technol., 190 (2015) 388–394.
  40. J.C. Yan, L. Han, W.G. Gao, X. Song, M.F. Chen, Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene, Bioresour. Technol., 175 (2015) 269–274.
  41. P. Devi, A.K. Saroha, Simultaneous adsorption and dechlorination of pentachlorphenol from effluent by Ni-ZVI magnetic biochar composites synthesized from paper mill sludge, Chem. Eng. J., 27 (2015) 195–203.
  42. L. Qin, Z.W. Li, Z.H. Xu, X.W. Guo, G.L. Zhang, Organic-aciddirected assembly of iron–carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation, Appl. Catal., B, 172 (2015) 500–508.
  43. M.N. Ahsan, P.R.P. Verma, Enhancement of in vitro dissolution and pharmacodynamic potential of olanzapine using solid SNEDDS, J. Pharm. Invest., 48 (2018) 269–278.
  44. X.D. Zha, Z.W. Wang, A.H. Liu, G.Y. Qian, Experimental Experimental Analysis on Material Properties for Buton Rock Asphalt and Its Modified Asphalt, Transportation Research Congress, Beijing , China, 2017, pp. 23–25.
  45. Z.H. Xie, Study on Remove of 2,4,6-TCP by Nano Fe/Ni Loaded by Crofton Weed Biochar Jointly with K2S2O8, Chengdu University of Technology, 2019.
  46. S. Annamalai, W.S. Shin, Efficient degradation of trimethoprim with ball-milled nitrogen-doped biochar catalyst via persulfate activation, Chem. Eng. J., 440 (2022) 135815, doi: 10.1016/j.cej.2022.135815.
  47. M.F. Arkaan, R.F. Ekaputri, I. Fatimah, A. Kamari, Physicochemical and photocatalytic activity of hematite/biochar nanocomposite prepared from Salacca skin waste, Sustainable Chem. Pharm., 16 (2020) 100261, doi: 10.1016/j.scp.2020.100261.
  48. N.G. Asenjo, R. Santamaría, C. Blanco, M. Granda, P. Álvarez, R. Menéndez, Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon, Carbon, 55 (2013) 62–69.