References
  -  A. Panagopoulos, V. Giannika, Comparative techno-economic
    and environmental analysis of minimal liquid discharge
    (MLD) and zero liquid discharge (ZLD) desalination systems
    for seawater brine treatment and valorization, Sustainable
    Energy Technol. Assess., 53 (2022) 102477, doi: 10.1016/j.seta.2022.102477. 
 
  -  A. Panagopoulos, Brine management (saline water and wastewater
    effluents): sustainable utilization and resource recovery
    strategy through minimal and zero liquid discharge (MLD
    and ZLD) desalination systems, Chem. Eng. Process. Process
    Intensif., 176 (2022) 108944, doi: 10.1016/j.cep.2022.108944. 
 
  -  A. Panagopoulos, Techno-economic assessment and
    feasibility study of a zero liquid discharge (ZLD) desalination
    hybrid system in the Eastern Mediterranean, Chem. Eng.
    Process. Process Intensif., 178 (2022) 109029, doi: 10.1016/j.cep.2022.109029. 
 
  -  S.M. Ho, Low-cost adsorbents for the removal of phenol/phenolics, pesticides, and dyes from wastewater systems: a
    review, Water, 14 (2022) 3203, doi: 10.3390/w14203203. 
 
  -  M.N. Abbas, A.-S.T. Al-Madhhachi, S.A. Esmael, Quantifying
    soil erodibility parameters due to wastewater chemicals,
    Int. J. Hydrol. Sci. Technol., 9 (2019) 550–568. 
 
  -  H.T. Hamad, Removal of phenol and inorganic metals from
    wastewater using activated ceramic, J. King Saud Univ. Eng.
    Sci., 33 (2021) 221–226. 
 
  -  V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal,
    Chromium removal from water by activated carbon
    developed from waste rubber tires, Environ. Sci. Pollut. Res.,
    20 (2013) 1261–1268. 
 
  -  S.M. Anisuzzaman, A. Bono, D. Krishnaiah, Y.Z. Tan, A study
    on dynamic simulation of phenol adsorption in activated
    carbon packed bed column, J. King Saud Univ. Eng. Sci.,
    28 (2016) 47–55. 
 
  -  M. Malakootian, H.J. Mansoorian, M. Alizadeh, A. Baghbanian,
    Phenol removal from aqueous solution by adsorption process:
    study of the nanoparticles performance prepared from Aloe
    vera and Mesquite (Prosopis) leaves, Sci. Iran. C, 24 (2017)
    3041–3052. 
 
  -  M.F. Abid, O.N. Abdulla, A.F. Kadhim, Study on removal of
    phenol from synthetic wastewater using solar photocatalytic
    reactor, J. King Saud Univ. Eng. Sci., 31 (2019) 131–139. 
 
  -  F. Kafshgari, A.R. Keshtkar, M.A. Mousavian, Study of
    Mo(VI) removal from aqueous solution: application of
    different mathematical models to continuous biosorption
    data, Iran. J. Environ. Health Sci. Eng., 10 (2013) 14,
    doi: 10.1186/1735-2746-10-14. 
 
  -  N. Miralles, C. Valderrama, I. Casas, M. Martínez, A. Florido,
    Cadmium and lead removal from aqueous solution by grape
    stalk wastes: modeling of a fixed-bed column, J. Chem. Eng.
    Data, 55 (2010) 3548–3554. 
 
  -  G. Vázquez, R. Alonso, S. Freire, J. González-Álvarez,
    G. Antorrena, Uptake of phenol from aqueous solutions by
    adsorption in a Pinus pinaster bark packed bed, J. Hazard.
    Mater., 133 (2006) 61–67. 
 
  -  L.F. Bautista, M. Martínez, J. Aracil, Adsorption of α-amylase
    in a fixed bed: operating efficiency and kinetic modeling,
    AlChE J., 49 (2003) 2631–2641. 
 
  -  C.-C. Chen, K.F. Hayes, X-ray absorption spectroscopy
    investigation of aqueous Co(II) and Sr(II) sorption at clay–
    water interfaces, Geochim. Cosmochim. Acta, 63 (1999)
    3205–3215. 
 
  -  H. Patel, Fixed-bed column adsorption study: a comprehensive
    review, Appl. Water Sci., 9 (2019) 45, doi: 10.1007/s13201-019-0927-7. 
 
  -  L. Rafati, M.H. Ehrampoush, A.A. Rafati, M. Mokhtari,
    A.H. Mahvi, Fixed bed adsorption column studies and models
    for removal of ibuprofen from aqueous solution by strong
    adsorbent nano-clay composite, J. Environ. Health Sci. Eng.,
    17 (2019) 753–765. 
 
  -  I. Ali, Microwave assisted economic synthesis of multi walled
    carbon nanotubes for arsenic species removal in water: batch
    and column operations, J. Mol. Liq., 271 (2018) 677–685. 
 
  -  L. Hao, Q. Liu, X. Li, Z. Du, P. Wang, A potentially low-cost
    modified sawdust (MSD) effective for rapid Cr(VI) and As(V)
    removal from water, RSC Adv., 91 (2014) 49569–49576. 
 
  -  J. López-Cervantes, D.I. Sánchez-Machado, R.G. Sánchez-Duarte, M.A. Correa-Murrieta, Study of a fixed-bed column in
    the adsorption of an azo dye from an aqueous medium using
    a chitosan–glutaraldehyde biosorbent, Adsorpt. Sci. Technol.,
    36 (2018) 215–232. 
 
  -  S.V.G. Rajan, H.G.G. Rao, Studies of Soils of India, Vikas
    Publishing House Pvt., Ltd., New Delhi, 1987. 
 
  -  Indian Standard Methods of Chemical Analysis of Fireclay
    and Refractory Materials, IS: 1527, 1960. 
 
  -  S.D. Faust, O.M. Aly, Adsorption Process for Water Treatment,
    Butterworths Publishers, Stoneham, 1987. 
 
  -  B. Volesky, I. Prasetyo, Cadmium removal in a biosorption
    column, Biotechnol. Bioeng., 43 (1994) 1010–1015. 
 
  -  T. Mpouras, A. Polydera, D. Dermatas, N. Verdone, G. Vilardi,
    Multi wall carbon nanotubes application for treatment of
    Cr(VI)-contaminated groundwater; modeling of batch and
    column experiments, Chemosphere, 269 (2021) 128749,
    doi: 10.1016/j.chemosphere.2020.128749. 
 
  -  J. Zhao, L. Yu, H. Ma, F. Zhou, K. Yang, G. Wu, Corn stalk-based
    activated carbon synthesized by a novel activation method
    for high-performance adsorption of hexavalent chromium
    in aqueous solutions, J. Colloid Interface Sci., 578 (2020)
    650–659. 
 
  -  A. Mandal, S.K. Das, Adsorptive removal of phenol by
    activated alumina and activated carbon from coconut coir and
    rice husk ash, Water Conserv. Sci. Eng., 4 (2019) 149–161. 
 
  -  J. Cruz-Olivares, C. Pérez-Alonso, C. Barrera-Díaz, F. Ureña-Nuñez, M.C. Chaparro-Mercado, B. Bilyeu, Modeling of
    lead(II) biosorption by residue of allspice in a fixed-bed column,
    Chem. Eng. J., 228 (2013) 21–27. 
 
  -  M.R. Samarghandi, M. Hadi, G. McKay, Breakthrough curve
    analysis for fixed-bed adsorption of azo dyes using novel
    pine cone—derived active carbon, Adsorpt. Sci. Technol.,
    32 (2014) 791–806. 
 
  -  S.B. Daffalla, H. Mukhtar, M.S. Shaharun, A.A. Hassaballa,
    Fixed-bed adsorption of phenol onto microporous activated
    carbon set from rice husk using chemical activation,
    Appl. Sci., 12 (2022) 4354, doi: 10.3390/app12094354. 
 
  -  S. Sarkar, S.K. Das, Removal of hexavalent chromium from
    aqueous solution using natural adsorbents - column studies,
    Int. J. Eng. Res. Technol. (IJERT), 5 (2016) 370–377. 
 
  -  S.S. Madan, B.S. De, K.L. Wasewar, Adsorption performance
    of packed bed column for benzylformic acid removal using
    CaO2 nanoparticles, Chem. Data Collect., 23 (2019) 100267,
    doi: 10.1016/j.cdc.2019.100267. 
 
  -  M. LaGrega, P. Buckingham, J. Evans, The Environmental
    Resources Management Group, Hazardous Waste Management,
    McGraw-Hill Inc., New York, NY, 1994. 
 
  -  R.A. Dobbs, J.M. Carbon, Adsorption Isotherms for Toxic
    Organics, Municipal Environmental Research Laboratory,
    Office of Research and Development, USEPA, Cincinnati,
    Ohio, 1980. 
 
  -  Metcalf and Eddy, Wastewater Engineering Treatment and
    Reuse, TATA McGraw-Hill, 2005. 
 
  -  W.J. Wujcik, W.L. Lowe, P.J. Marks, W.E. Sisk, Granular
    activated carbon pilot treatment studies for explosives removal
    from contaminated groundwater, Environ. Prog., 11 (1992)
  178–189.