References
  -  Y.H. Zhang, S.L. Liu, H.H. Xie, X.L. Zeng, J.H. Li, Current
    status on leaching precious metals from waste printed circuit
    boards, Procedia Environ. Sci., 16 (2012) 560–568. 
 
  -  H. Wang, H.L. Song, R. Yu, X. Cao, Z. Fang, X.N. Li, New
    process for copper migration by bioelectricity generation in
    soil microbial fuel cells, Environ. Sci. Pollut. Res. Int., 23 (2016)
    13147–13154. 
 
  -  V. Rai, D.B. Liu, D. Xia, Y. Jayaraman, J.-C.P. Gabriel,
    Electrochemical approaches for the recovery of metals from
    electronic waste: a critical review, Recycling, 6 (2021) 53,
    doi: 10.3390/recycling6030053. 
 
  -  T. Zubala, M. Patro, P. Boguta, Variability of zinc, copper and
    lead contents in sludge of the municipal stormwater treatment
    plant, Environ. Sci. Pollut. Res. Int., 24 (2017) 17145–17152. 
 
  -  Z.Q. Zhang, Y. Zhou, J. Zhang, S.Q. Xia, Copper(II) adsorption
    by the extracellular polymeric substance extracted from
    waste activated sludge after short-time aerobic digestion,
    Environ. Sci. Pollut. Res. Int., 21 (2014) 2132–2140. 
 
  -  L.P. Wang, Y.J. Chen, Sequential precipitation of iron, copper,
    and zinc from wastewater for metal recovery, J. Environ. Eng.,
    145 (2019) 04018130, doi: 10.1061/(ASCE)EE.1943-7870.0001480. 
 
  -  Z.L. Dong, T. Jiang, B. Xu, J.K. Yang, Y.Z. Chen, Q. Li, Y.B. Yang,
    Comprehensive recoveries of selenium, copper, gold, silver and
    lead from a copper anode slime with a clean and economical
    hydrometallurgical process, Chem. Eng. J., 393 (2020) 124762,
    doi: 10.1016/j.cej.2020.124762. 
 
  -  G. Kavlak, T.E. Graedel, Global anthropogenic selenium cycles
    for 1940–2010, Resour. Conserv. Recycl., 73 (2013) 17–22. 
 
  -  G. Kavlak, T.E. Graedel, Global anthropogenic tellurium cycles
    for 1940–2010, Resour. Conserv. Recycl., 76 (2013) 21–26. 
 
  -  U. Jadhav, H. Hocheng, Hydrometallurgical recovery of metals
    from large printed circuit board pieces, Sci. Rep., 5 (2015) 14574,
    doi: 10.1038/srep14574. 
 
  -  S. Hedrich, R. Kermer, T. Aubel, M. Martin, A. Schippers,
    D.B. Johnson, E. Janneck, Implementation of biological and
    chemical techniques to recover metals from copper-rich leach
    solutions, Hydrometallurgy, 179 (2018) 274–281. 
 
  -  M.Q. Li, N. Chen, H. Shang, C.C. Ling, K. Wei, S.X. Zhao,
    B. Zhou, F.L. Jia, Z.H. Ai, L.Z. Zhang, An electrochemical
    strategy for simultaneous heavy metal complexes wastewater
    treatment and resource recovery, Environ. Sci. Technol.,
    56 (2022) 10945–10953. 
 
  -  L.G. Zhang, Z.M. Xu, A critical review of material flow,
    recycling technologies, challenges and future strategy for
    scattered metals from minerals to wastes, J. Cleaner Prod.,
    202 (2018) 1001–1025. 
 
  -  G.Q. Liu, Y.F. Wu, A.J. Tang, D. Pan, B. Li, Recovery of
    scattered and precious metals from copper anode slime by
    hydrometallurgy: a review, Hydrometallurgy, 197 (2020)
    105460, doi: 10.1016/j.hydromet.2020.105460. 
 
  -  J.W. Kim, A.S. Lee, S.G. Yu, J.W. Han, En masse pyrolysis of
    flexible printed circuit board wastes quantitatively yielding
    environmental resources, J. Hazard. Mater., 342 (2018) 51–57. 
 
  -  L.L. Wang, Q. Li, Y. Li, X.Y. Sun, J.S. Li, J.Y. Shen, W.Q. Han,
    L.J. Wang, A novel approach for recovery of metals from waste
    printed circuit boards and simultaneous removal of iron from
    steel pickling waste liquor by two-step hydrometallurgical
    method, Waste Manage. (Oxford), 71 (2018) 411–419. 
 
  -  J. Demol, E. Ho, G. Senanayake, Sulfuric acid baking and
    leaching of rare earth elements, thorium and phosphate from
    a monazite concentrate: effect of bake temperature from 200°C
    to 800°C, Hydrometallurgy, 179 (2018) 254–267. 
 
  -  J.L. Su, X. Lin, S.L. Zheng, R. Ning, W.B. Lou, W. Jin, Mass
    transport-enhanced electrodeposition for the efficient
    recovery of copper and selenium from sulfuric acid solution,
    Sep. Purif. Rev., 182 (2017) 160–165. 
 
  -  W.B. Lou, W.Q. Cai, P. Li, J.L. Su, S.L. Zheng, Y. Zhang,
    W. Jin, Additives-assisted electrodeposition of fine spherical
    copper powder from sulfuric acid solution, Powder Technol.,
    326 (2018) 84–88. 
 
  -  M.D. Machado, E.V. Soares, H.M. Soares, Selective recovery
    of chromium, copper, nickel, and zinc from an acid solution
    using an environmentally friendly process, Environ. Sci. Pollut.
    Res. Int., 18 (2011) 1279–1285. 
 
  -  C. Liu, T. Wu, P.C. Hsu, J. Xie, J. Zhao, K. Liu, J. Sun, J.W. Xu,
    J. Tang, Z.W. Ye, D.C. Lin, Y. Cui, Direct/alternating current
    electrochemical method for removing and recovering heavy
    metal from water using graphene oxide electrode, ACS Nano,
    13 (2019) 6431–6437. 
 
  -  E. De Beni, W. Giurlani, L. Fabbri, R. Emanuele, S. Santini,
    C. Sarti, T. Martellini, E. Piciollo, A. Cincinelli, M. Innocenti,
    Graphene-based nanomaterials in the electroplating
    industry: a suitable choice for heavy metal removal from
  wastewater, Chemosphere, 292 (2022) 133448, doi: 10.1016/j.chemosphere.2021.133448. 
 
  -  Y. Delgado, F.J. Fernandez-Morales, J. Llanos, An old technique
    with a promising future: recent advances in the use of
    electrodeposition for metal recovery, Molecules, 26 (2021) 5525,
    doi: 10.3390/molecules26185525. 
 
  -  D.R. Turner, G.R. Johnson, The effect of some addition agents
    on the kinetics of copper electrodeposition from a sulfate
    solution, J. Electrochem. Soc., 190 (1962) 798–804. 
 
  -  C.X. Ji, G. Oskam, P.C. Searson, Electrodeposition of copper
    on silicon from sulfate solution, J. Electrochem. Soc.,
    148 (2001) C746–C752. 
 
  -  L.P. Wang, G.Q. Zhang, W.J. Guan, L. Zeng, Q. Zhou,
    Y. Xia, Q. Wang, Q.G. Li, Z.Y. Cao, Complete removal of trace
    vanadium from ammonium tungstate solutions by solvent
    extraction, Hydrometallurgy, 179 (2018) 268–273. 
 
  -  D. Torres, L. Madriz, R. Vargas, B.R. Scharifker, Electrochemical
    formation of copper phosphide from aqueous solutions of
    Cu(II) and hypophosphite ions, Electrochim. Acta, 354 (2020)
  136705, doi: 10.1016/j.electacta.2020.136705. 
 
  -  T. Kekesi, M. Isshiki, Electrodeposition of copper from pure
    cupric chloride hydrochloric acid solutions, J. Electroanal.
    Chem., 27 (1997) 982–990. 
 
  -  M.Y. Wang, X.Z. Gong, Z. Wang, Sustainable electrochemical
    recovery of high-purity Cu powders from multi-metal acid
    solution by a centrifuge electrode, J. Cleaner Prod., 204 (2018)
    41–49. 
 
  -  F.I. Lizama-Tzec, L. Canché-Canul, G. Oskam, Electrodeposition
    of copper into trenches from a citrate plating bath,
    Electrochim. Acta, 56 (2011) 9391–9396. 
 
  -  R. Torres, G.T. Lapidus, Closed circuit recovery of copper,
    lead and iron from electronic waste with citrate solutions,
    Waste Manage. (Oxford), 60 (2017) 561–568. 
 
  -  X.T. Yu, M.Y. Wang, X.Z. Gong, Z.C. Guo, Z. Wang, S.Q. Jiao,
    Self-supporting porous CoP-based films with phase-separation
    structure for ultrastable overall water electrolysis at large
    current density, Adv. Energy Mater., 34 (2018) 1802445,
    doi: 10.1002/aenm.201802445. 
 
  -  B. Segura-Bailón, G.T. Lapidus, Selective recovery of copper
    contained in waste PCBs from cellphones with impurity
    inhibition in the citrate-phosphate system, Hydrometallurgy,
  203 (2021) 105699, doi: 10.1016/j.hydromet.2021.105699. 
 
  -  K. Suwannahong, J. Sripirom, C. Sirilamduan, V. Thathong,
    T. Kreetachart, P. Panmuang, A. Deepatana, S. Punbut,
    S. Wongcharee, H. Hamad, Selective chelating resin for copper
    removal and recovery in aqueous acidic solution generated
    from synthetic copper-citrate complexes from bioleaching of
  e-waste, Adsorpt. Sci. Technol., 2022 (2022) 1–14. 
 
  -  S.S. Goh, M. Rafatullah, N. Ismail, M. Alam, M.R. Siddiqui,
    E.K. Seow, Separation of chromium(VI), copper and zinc:
    chemistry of transport of metal ions across supported liquid
    membrane, Membranes (Basel), 12 (2022) 685, doi: 10.3390/membranes12070685. 
 
  -  J.E. Terrazas-Rodríguez, S. Gutiérrez-Granados, M.A. Alatorre-
    Ordaz, C. Ponce de León, F.C. Walsh, A comparison of the
    electrochemical recovery of palladium using a parallel flat
    plate flow-by reactor and a rotating cylinder electrode reactor,
    Electrochim. Acta, 56 (2011) 9357–9363. 
 
  -  W. Jin, M.Q. Hu, J.G. Hu, Selective and efficient electrochemical
    recovery of dilute copper and tellurium from acidic chloride
    solutions, ACS Sustainable Chem. Eng., 6 (2018) 13378–13384. 
 
  -  M.Q. Hu, Z. Sun, J.G. Hu, H. Lei, W. Jin, Simultaneous
    phenol detoxification and dilute metal recovery in cyclone
    electrochemical reactor, Ind. Eng. Chem. Res., 58 (2019)
    12642–12649. 
 
  -  E. Mostafa, S. Martens, L. Asen, J. Zečević, O. Schneider,
    C. Argirusis, The influence of the ultrasound characteristics
    on the electrodeposition of copper from chloride-based
    electrolytes, J. Electroanal. Chem., 892 (2021) 115318,
    doi: 10.1016/j.jelechem.2021.115318. 
 
  -  W. Jin, P.I. Laforest, A. Luyima, W. Read, L. Navarro, M.S. Moats,
    Electrolytic recovery of bismuth and copper as a powder
    from acidic sulfate effluents using an emew® cell, RSC Adv.,
    5 (2015) 50372–50378. 
 
  -  J.A. Barragan, C. Ponce de Leon, J.R. Aleman Castro,
    A. Peregrina-Lucano, F. Gomez-Zamudio, 
    E.R. Larios-
    Duran, Copper and antimony recovery from electronic waste
    by hydrometallurgical and electrochemical techniques,
    ACS Omega, 5 (2020) 12355–12363.  
  -  G. Maduraiveeran, J. Wei, Nanomaterials based electrochemical
    sensor and biosensor platforms for environmental
    applications, Trends Environ. Anal. Chem., 13 (2017) 10–23. 
 
  -  S. Rode, C. Henninot, C. Vallières, M. Matlosz, Complexation
    chemistry in copper plating from citrate baths, J. Electrochem.
    Soc., 151 (2004) C405–C411. 
 
  -  W. Shao, G. Pattanaik, G. Zangari, Influence of chloride anions
    on the mechanism of copper electrodeposition from acidic
    sulfate electrolytes, J. Electrochem. Soc., 154 (2007) D201–D207.