References
- N. Morin-Crini, E. Lichtfouse, G. Liu, V. Balaram, A.R.L. Ribeiro,
Z. Lu, F. Stock, E. Carmona, M.R. Teixeira, L.A. Picos-Corrales,
J.C. Moreno-Piraján, L. Giraldo, C. Li, A. Pandey, D. Hocquet,
G. Torri, G. Crini, Worldwide cases of water pollution by
emerging contaminants: a review, Environ. Chem. Lett.,
20 (2022) 2311–2338.
- OECD, Pharmaceutical Residues in Freshwater, OECD, Paris,
2019. doi: 10.1787/c936f42d-en
- W.C. Li, Occurrence, sources, and fate of pharmaceuticals
in aquatic environment and soil, Environ. Pollut., 187 (2014)
193–201.
- Y. Zhou, S. Wu, H. Zhou, H. Huang, J. Zhao, Y. Deng, H. Wang,
Y. Yang, J. Yang, L. Luo, Chiral pharmaceuticals: environment
sources, potential human health impacts, remediation
technologies and future perspective, Environ. Int., 121 (2018)
523–537.
- T. aus der Beek, F.A. Weber, A. Bergmann, S. Hickmann, I. Ebert,
A. Hein, A. Küster, Pharmaceuticals in the environmentglobal
occurrences and perspectives, Environ. Toxicol. Chem.,
35 (2016) 823–835.
- J. Maculewicz, D. Kowalska, K. Świacka, M. Toński,
P. Stepnowski, A. Białk-Bielińska, J. Dołżonek, Transformation
products of pharmaceuticals in the environment: their
fate, (eco)toxicity and bioaccumulation potential, Sci. Total
Environ., 802 (2022) 149916, doi: 10.1016/J.SCITOTENV.2021.149916.
- N. Sammut Bartolo, L.M. Azzopardi, A. Serracino-Inglott,
Pharmaceuticals and the environment, Early Human Dev.,
155 (2021) 105218, doi: 10.1016/j.earlhumdev.2020.105218.
- P. Sathishkumar, R.A.A. Meena, T. Palanisami, V. Ashokkumar,
T. Palvannan, F.L. Gu, Occurrence, interactive effects and
ecological risk of diclofenac in environmental compartments
and biota – a review, Sci. Total Environ., 698 (2020) 134057,
doi: 10.1016/J.SCITOTENV.2019.134057.
- T. Heberer, Occurrence, fate, and removal of pharmaceutical
residues in the aquatic environment: a review of recent
research data, Toxicol. Lett., 131 (2002) 5–17.
- A. Kumar Mehata, M.N. Lakshmi Suseela, P. Gokul, A. Kumar
Malik, M. Kasi Viswanadh, C. Singh, J. Selvin, M.S. Muthu,
Fast and highly efficient liquid chromatographic methods
for qualification and quantification of antibiotic residues
from environmental waste, Microchem. J., 179 (2022) 107573,
doi: 10.1016/J.MICROC.2022.107573.
- S. Pal, Z. Ahamed, P. Pal, Removal of antibiotics and
pharmaceutically active compounds from water environment:
experiments towards industrial scale up, Sep. Purif. Technol.,
295 (2022) 121249, doi: 10.1016/j.seppur.2022.121249.
- T. Mackul’ak, S. Černanský, M. Fehér, L. Birošová, M. Gál,
Pharmaceuticals, drugs, and resistant microorganisms —
environmental impact on population health, Curr. Opin.
Environ. Sci. Health, 9 (2019) 40–48.
- K. Samal, S. Mahapatra, M. Hibzur Ali, Pharmaceutical
wastewater as emerging contaminants (EC): treatment technologies,
impact on environment and human health, Energy
Nexus, 6 (2022) 100076, doi: 10.1016/j.nexus.2022.100076.
- T.S. Oliveira, M. Murphy, N. Mendola, V. Wong, D. Carlson,
L. Waring, Characterization of pharmaceuticals and personal
care products in hospital effluent and wastewater influent/effluent by direct-injection LC-MS-MS, Sci. Total Environ.,
518–519 (2015) 459–478.
- O.I. González Peña, M.Á. López Zavala, H. Cabral Ruelas,
Pharmaceuticals market, consumption trends and disease
incidence are not driving the pharmaceutical research on water
and wastewater, Int. J. Environ. Res. Public Health, 18 (2021)
1–37.
- R.I.L. Eggen, J. Hollender, A. Joss, M. Schärer, C. Stamm,
Reducing the discharge of micropollutants in the aquatic
environment: the benefits of upgrading wastewater treatment
plants, Environ. Sci. Technol., 48 (2014) 7683–7689.
- D. Su, W. Ben, B.W. Strobel, Z. Qiang, Impacts of wastewater
treatment plant upgrades on the distribution and risks
of pharmaceuticals in receiving rivers, J. Hazard. Mater.,
406 (2021) 124331, doi: 10.1016/j.jhazmat.2020.124331.
- J. Rogowska, M. Cieszynska-Semenowicz, W. Ratajczyk,
L. Wolska, Micropollutants in treated wastewater, Ambio,
49 (2020) 487–503.
- C. Mejías, J. Martín, J.L. Santos, I. Aparicio, E. Alonso, Occurrence
of pharmaceuticals and their metabolites in sewage sludge and
soil: a review on their distribution and environmental risk
assessment, Trends Environ. Anal. Chem., 30 (2021) e00125,
doi: 10.1016/J.TEAC.2021.E00125.
- Q. Li, W. Wang, X. Jiang, D. Lu, Y. Zhang, J. Li, Analysis of the
potential of reclaimed water utilization in typical inland cities
in northwest China via system dynamics, J. Environ. Manage.,
270 (2020) 110878, doi: 10.1016/J.JENVMAN.2020.110878.
- X. Ren, Y. Zhang, H. Chen, Graywater treatment technologies
and reuse of reclaimed water for toilet flushing, Environ. Sci.
Pollut. Res., 27 (2020) 34653–34663.
- Y. Deng, Y. Zhang, H. Ren, Multi-omic studies on the toxicity
variations in effluents from different units of reclaimed
water treatment, Water Res., 208 (2022) 117874, doi: 10.1016/J.WATRES.2021.117874.
- A. Poustie, Y. Yang, P. Verburg, K. Pagilla, D. Hanigan, Reclaimed
wastewater as a viable water source for agricultural irrigation:
a review of food crop growth inhibition and promotion in
the context of environmental change, Sci. Total Environ.,
739 (2020) 139756, doi: 10.1016/J.SCITOTENV.2020.139756.
- N.H. Tran, M. Reinhard, K.Y.H. Gin, Occurrence and fate of
emerging contaminants in municipal wastewater treatment
plants from different geographical regions-a review, Water Res.,
133 (2018) 182–207.
- M. Pei, B. Zhang, Y. He, J. Su, K. Gin, O. Lev, G. Shen, S. Hu,
State of the art of tertiary treatment technologies for controlling
antibiotic resistance in wastewater treatment plants, Environ.
Int., 131 (2019) 105026, doi: 10.1016/J.ENVINT.2019.105026.
- M. Ortúzar, M. Esterhuizen, D.R. Olicón-Hernández,
J. González-López, E. Aranda, Pharmaceutical pollution in
aquatic environments: a concise review of environmental
impacts and bioremediation systems, Front. Microbiol.,
13 (2022) 869332, doi: 10.3389/fmicb.2022.869332.
- N. Pérez-Lemus, R. López-Serna, S.I. Pérez-Elvira, E. Barrado,
Analysis of 60 pharmaceuticals and personal care products
in sewage sludge by ultra-high performance liquid
chromatography and tandem mass spectroscopy, Microchem.
J., 175 (2022) 107148, doi: 10.1016/j.microc.2021.107148.
- M. Ashfaq, Y. Li, Y. Wang, W. Chen, H. Wang, X. Chen, W. Wu,
Z. Huang, C.P. Yu, Q. Sun, Occurrence, fate, and mass balance of
different classes of pharmaceuticals and personal care products
in an anaerobic-anoxic-oxic wastewater treatment plant in
Xiamen, China, Water Res., 123 (2017) 655–667.
- X. Yang, R. Zou, K. Tang, H.R. Andersen, I. Angelidaki,
Y. Zhang, Degradation of metoprolol from wastewater in a bioelectro-
Fenton system, Sci. Total Environ., 771 (2021) 145385,
doi: 10.1016/j.scitotenv.2021.145385.
- N. Villota, J.M. Lomas, L.M. Camarero, Study of the
paracetamol degradation pathway that generates color and
turbidity in oxidized wastewaters by photo-Fenton technology,
J. Photochem. Photobiol., A, 329 (2016) 113–119.
- T.H. de O. Norte, R.B.P. Marcelino, F.H.A. Medeiros,
R.P.L. Moreira, C.C. Amorim, R.M. Lago, Ozone oxidation of
β-lactam antibiotic molecules and toxicity decrease in aqueous
solution and industrial wastewaters heavily contaminated,
Ozone Sci. Eng., 40 (2018) 385–391.
- P. Somathilake, J.A. Dominic, G. Achari, C.H. Langford, J.H. Tay,
Degradation of carbamazepine by photo-assisted ozonation:
influence of wavelength and intensity of radiation, Ozone Sci.
Eng., 40 (2018) 113–121.
- J. Bohdziewicz, E. Kudlek, M. Dudziak, Influence of the
catalyst type (TiO2 and ZnO) on the photocatalytic oxidation
of pharmaceuticals in the aquatic environment, Desal. Water
Treat., 57 (2016) 1552–1563.
- D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, J. Li,
Q.V. Ly, T.A.H. Nguyen, V.S. Tran, Applying a new pomelo
peel derived biochar in microbial fell cell for enhancing sulfonamide
antibiotics removal in swine wastewater, Bioresour.
Technol., 318 (2020) 123886, doi: 10.1016/j.biortech.2020.123886.
- X.R. Jing, Y.Y. Wang, W.J. Liu, Y.K. Wang, H. Jiang, Enhanced
adsorption performance of tetracycline in aqueous solutions by
methanol-modified biochar, Chem. Eng. J., 248 (2014) 168–174.
- Y. Chen, J. Vymazal, T. Březinová, M. Koželuh, L. Kule,
J. Huang, Z. Chen, Occurrence, removal and environmental
risk assessment of pharmaceuticals and personal care products
in rural wastewater treatment wetlands, Sci. Total Environ.,
566–567 (2016) 1660–1669.
- D.Q. Zhang, T. Hua, R.M. Gersberg, J. Zhu, W.J. Ng, S.K. Tan,
Carbamazepine and naproxen: fate in wetland mesocosms
planted with Scirpus validus, Chemosphere, 91 (2013) 14–21.
- E. Neczaj, Fate of selected emerging contaminants in wastewater
treatment systems, Desal. Water Treat., 199 (2020) 451–463.
- H. Wang, S. Wang, Y. Liu, Y. Fu, P. Wu, G. Zhou, Degradation
of diclofenac by Fe(II)-activated bisulfite: kinetics, mechanism
and transformation products, Chemosphere, 237 (2019) 124518,
doi: 10.1016/J.CHEMOSPHERE.2019.124518.
- Z. Qiu, J. Sun, D. Han, F. Wei, Q. Mei, B. Wei, X. Wang,
Z. An, X. Bo, M. Li, J. Xie, M. He, Ozonation of diclofenac in
the aqueous solution: mechanism, kinetics and ecotoxicity
assessment, Environ. Res., 188 (2020) 109713, doi: 10.1016/J.ENVRES.2020.109713.
- S. Poirier-Larabie, P.A. Segura, C. Gagnon, Degradation of the
pharmaceuticals diclofenac and sulfamethoxazole and their
transformation products under controlled environmental
conditions, Sci. Total Environ., 557–558 (2016) 257–267.
- J. Scaria, P.V. Nidheesh, Pre-treatment of real pharmaceutical
wastewater by heterogeneous Fenton and persulfate oxidation
processes, Environ. Res., 217 (2023) 114786, doi: 10.1016/j.envres.2022.114786.
- N. Taoufik, W. Boumya, M. Achak, M. Sillanpää, N. Barka,
Comparative overview of advanced oxidation processes
and biological approaches for the removal pharmaceuticals,
J. Environ. Manage., 288 (2021) 112404, doi: 10.1016/j.jenvman.2021.112404.
- A.O. Oluwole, E.O. Omotola, O.S. Olatunji, Pharmaceuticals
and personal care products in water and wastewater: a review
of treatment processes and use of photocatalyst immobilized
on functionalized carbon in AOP degradation, BMC Chem.,
14 (2020), doi: 10.1186/s13065-020-00714-1.
- D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation
process-mediated removal of pharmaceuticals from water: a
review, J. Environ. Manage., 219 (2018) 189–207.
- J.O. Eniola, R. Kumar, M.A. Barakat, J. Rashid, A review
on conventional and advanced hybrid technologies for
pharmaceutical wastewater treatment, J. Cleaner Prod.,
356 (2022) 131826, doi: 10.1016/j.jclepro.2022.131826.
- M.A. Oturan, J.J. Aaron, Advanced oxidation processes in
water/wastewater treatment: principles and applications. a
review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
- I. Oller, S. Malato, J.A. Sánchez-Pérez, Combination of advanced
oxidation processes and biological treatments for wastewater
decontamination—a review, Sci. Total Environ., 409 (2011)
4141–4166.
- Contaminants of Emerging Concern including Pharmaceuticals
and Personal Care Products, 2022. Available at https://www.
epa.gov/wqc/contaminants-emerging-concern-includingpharmaceuticals-and-personal-care-products (Accessed
February 3, 2023).
- Freshwater Signals, 2022. Available at https://www.eea.
europa.eu/publications/zero-pollution/ecosystems/signals/freshwater (Accessed February 3, 2023).
- A. Küster, N. Adler, Pharmaceuticals in the environment:
Scientific evidence of risks and its regulation, Philos. Trans. R.
Soc. London, Ser. B, 369 (2014), doi: 10.1098/rstb.2013.0587.
- European Medicines Agency, Environmental Risk-Assessment
of Medicines, 2015.
- M. Apreja, A. Sharma, S. Balda, K. Kataria, N. Capalash,
P. Sharma, Antibiotic residues in environment: antimicrobial
resistance development, ecological risks, and bioremediation,
Environ. Sci. Pollut. Res., 29 (2022) 3355–3371.
- R.P. Bisognin, D.B. Wolff, E. Carissimi, O.D. Prestes, R. Zanella,
T.R. Storck, B. Clasen, Potential environmental toxicity of
sewage effluent with pharmaceuticals, Ecotoxicology, 29 (2020)
1315–1326.
- J. García, M.J. García-Galán, J.W. Day, R. Boopathy,
J.R. White, S. Wallace, R.G. Hunter, A review of emerging organic
contaminants (EOCs), antibiotic resistant bacteria (ARB),
and antibiotic resistance genes (ARGs) in the environment:
increasing removal with wetlands and reducing environmental
impacts, Bioresour. Technol., 307 (2020) 123228, doi: 10.1016/J.BIORTECH.2020.123228.
- A. Barra Caracciolo, E. Topp, P. Grenni, Pharmaceuticals in the
environment: biodegradation and effects on natural microbial
communities. A review, J. Pharm. Biomed. Anal., 106 (2015)
25–36.
- Y. Ben, C. Fu, M. Hu, L. Liu, M.H. Wong, C. Zheng, Human
health risk assessment of antibiotic resistance associated with
antibiotic residues in the environment: a review, Environ. Res.,
169 (2019) 483–493.
- J. Denissen, B. Reyneke, M. Waso-Reyneke, B. Havenga,
T. Barnard, S. Khan, W. Khan, Prevalence of ESKAPE pathogens
in the environment: antibiotic resistance status, communityacquired
infection and risk to human health, Int. J. Hyg. Environ.
Health, 244 (2022) 114006, doi: 10.1016/J.IJHEH.2022.114006.
- J. Zhang, V.W.C. Chang, A. Giannis, J.Y. Wang, Removal of
cytostatic drugs from aquatic environment: a review, Sci. Total
Environ., 445–446 (2013) 281–298.
- M. Szopińska, J. Potapowicz, K. Jankowska, A. Luczkiewicz,
O. Svahn, E. Björklund, C. Nannou, D. Lambropoulou,
Ż. Polkowska, Pharmaceuticals and other contaminants of
emerging concern in Admiralty Bay as a result of untreated
wastewater discharge: status and possible environmental
consequences, Sci. Total Environ., 835 (2022) 155400,
doi: 10.1016/J.SCITOTENV.2022.155400.
- L. Lonappan, S.K. Brar, R.K. Das, M. Verma, R.Y. Surampalli,
Diclofenac and its transformation products: environmental
occurrence and toxicity – a review, Environ. Int., 96 (2016)
127–138.
- B. Bonnefille, E. Gomez, F. Courant, A. Escande, H. Fenet,
Diclofenac in the marine environment: a review of its
occurrence and effects, Mar. Pollut. Bull., 131 (2018) 496–506.
- J. Jan-Roblero, J.A. Cruz-Maya, Ibuprofen: toxicology and
biodegradation of an emerging contaminant, Molecules,
28 (2023), doi: 10.3390/molecules28052097.
- D. Wojcieszyńska, U. Guzik, Naproxen in the environment: its
occurrence, toxicity to nontarget organisms and biodegradation,
Appl. Microbiol. Biotechnol., 104 (2020) 1849–1857.
- M. Parolini, Toxicity of the non-steroidal anti-inflammatory
drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac,
ibuprofen and naproxen towards freshwater invertebrates: a
review, Sci. Total Environ., 740 (2020) 140043, doi: 10.1016/J.
SCITOTENV.2020.140043.
- P. Izadi, P. Izadi, R. Salem, S.A. Papry, S. Magdouli,
R. Pulicharla, S.K. Brar, Non-steroidal anti-inflammatory
drugs in the environment: where were we and how far we
have come?, Environ. Pollut., 267 (2020) 115370, doi: 10.1016/J.ENVPOL.2020.115370.
- T.I.A. Gouveia, I.H. Mota, A.M.T. Silva, A. Alves, M.S.F. Santos,
Are cytostatic drugs in surface waters a potential threat?,
Sci. Total Environ., 853 (2022) 158559, doi: 10.1016/J.SCITOTENV.2022.158559.
- M. Jureczko, J. Kalka, Cytostatic pharmaceuticals as
water contaminants, Eur. J. Pharmacol., 866 (2020) 172816,
doi: 10.1016/J.EJPHAR.2019.172816.
- T.I.A. Gouveia, A. Alves, M.S.F. Santos, New insights on
cytostatic drug risk assessment in aquatic environments based
on measured concentrations in surface waters, Environ. Int.,
133 (2019) 105236, doi: 10.1016/J.ENVINT.2019.105236.
- C. Kleinert, S. Poirier-Larabie, C. Gagnon, C. André, F. Gagné,
Occurrence and ecotoxicity of cytostatic drugs
5-fluorouracil
and methotrexate in the freshwater unionid Elliptio complanata,
Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 244 (2021)
109027, doi: 10.1016/J.CBPC.2021.109027.
- J.O. Ojoghoro, M.D. Scrimshaw, J.P. Sumpter, Steroid hormones
in the aquatic environment, Sci. Total Environ., 792 (2021)
148306, doi: 10.1016/J.SCITOTENV.2021.148306.
- R. Zhong, H. Zou, J. Gao, T. Wang, Q. Bu, Z.L. Wang, M. Hu,
Z. Wang, A critical review on the distribution and ecological
risk assessment of steroid hormones in the environment in
China, Sci. Total Environ., 786 (2021) 147452, doi: 10.1016/J.SCITOTENV.2021.147452.
- A. Puckowski, K. Mioduszewska, P. Łukaszewicz, M. Borecka,
M. Caban, J. Maszkowska, P. Stepnowski, Bioaccumulation
and analytics of pharmaceutical residues in the environment: a
review, J. Pharm. Biomed. Anal., 127 (2016) 232–255.
- J.L. Santos, J. Martín, C. Mejías, I. Aparicio, E. Alonso,
Pharmaceuticals and Their Metabolites in Sewage Sludge
and Soils: Distribution and Environmental Risk Assessment,
A. Núñez-Delgado, M. Arias-Estévez, Eds., Emerging
Pollutants in Sewage Sludge and Soils, The Handbook of
Environmental Chemistry, Vol. 114, Springer, Cham, 2022.
doi: 10.1007/698_2022_847
- M. Klaic, F. Jirsa, 17α-Ethinylestradiol (EE2): concentrations in
the environment and methods for wastewater treatment - an
update, RSC Adv., 12 (2022) 12794–12805.
- B. Albero, C. Sánchez-Brunete, E. Miguel, R.A. Pérez, J.L. Tadeo,
Analysis of natural-occurring and synthetic sexual hormones
in sludge-amended soils by matrix solid-phase dispersion
and isotope dilution gas chromatography-tandem mass
spectrometry, J. Chromatogr. A, 1283 (2013) 39–45.
- I.A. Duarte, J. Fick, H.N. Cabral, V.F. Fonseca, Bioconcentration
of neuroactive pharmaceuticals in fish: relation to lipophilicity,
experimental design and toxicity in the aquatic environment,
Sci. Total Environ., 812 (2022) 152543, doi: 10.1016/J.SCITOTENV.2021.152543.
- J.L. Wilkinson, A.B.A. Boxall, D.W. Kolpin, M. Milakovic,
A. Chaumot, S. Seidensticker, M. Melling, A. Supriatin,
S. Sherif, Pharmaceutical pollution of the world’s rivers, Proc.
Natl. Acad. Sci. U.S.A., 119 (2023) e2113947119, doi: 10.1073/pnas.2113947119.
- G. Kaushik, M.A. Thomas, The potential association of
psychoactive pharmaceuticals in the environment with human
neurological disorders, Sustainable Chem. Pharm., 13 (2019)
100148, doi: 10.1016/j.scp.2019.100148.
- A. Kock, H.C. Glanville, A.C. Law, T. Stanton, L.J. Carter,
J.C. Taylor, Emerging challenges of the impacts of pharmaceuticals
on aquatic ecosystems: a diatom perspective, Sci.
Total Environ., 878 (2023) 162939, doi: 10.1016/J.SCITOTENV.2023.162939.
- J.P. Bavumiragira, J. Ge, H. Yin, Fate and transport of
pharmaceuticals in water systems: a processes review,
Sci. Total Environ., 823 (2022) 153635, doi: 10.1016/J.SCITOTENV.2022.153635.
- N. Pérez-Lemus, R. López-Serna, S.I. Pérez-Elvira, E. Barrado,
Analytical methodologies for the determination of pharmaceuticals
and personal care products (PPCPs) in sewage
sludge: a critical review, Anal. Chim. Acta, 1083 (2019) 19–40.
- K. Miserli, C. Kosma, I. Konstantinou, Determination of
pharmaceuticals and metabolites in sludge and hydrochar
after hydrothermal carbonization using sonication—
QuEChERS extraction method and UHPLC LTQ/Orbitrap MS,
Environ. Sci. Pollut. Res., 30 (2023) 1686–1703.
- J. Park, C. Kim, Y. Hong, W. Lee, S. Lee, H. Chung, H. Kim,
D.-H. Jeong, Determination of pharmaceuticals in solid
samples in municipal wastewater treatment plants by online
SPE LC-MS/MS using QuEChERS extraction, Environ. Monit.
Assess., 193 (2021), doi: 10.1007/s10661-021-09069-z.
- G. Castro, I. Carpinteiro, I. Rodríguez, R. Cela, Determination
of cardiovascular drugs in sewage sludge by matrix solid-phase
dispersion and ultra-performance liquid chromatography
tandem mass spectrometry, Anal. Bioanal. Chem., 410 (2018)
6807–6817.
- B. Tegegne, B.S. Chandravanshi, F. Zewge, L. Chimuka, Solidphase
optimisation for simultaneous determination of thirteen
pharmaceuticals in Ethiopian water samples with HPLCDAD
detection: an initial assessment, Environ. Monit. Assess.,
193 (2021, doi: 10.1007/s10661-021-08999-y.
- C.R. Ohoro, A.O. Adeniji, A.I. Okoh, O.O. Okoh, Distribution
and chemical analysis of pharmaceuticals and personal care
products (PPCPs) in the environmental systems: a review, Int.
J. Environ. Res. Public Health, 16 (2019) 3026, doi: 10.3390/
ijerph16173026.
- D. Fatta, A. Achilleos, A. Nikolaou, S. Meriç, Analytical methods
for tracing pharmaceutical residues in water and wastewater,
TrAC, Trends Anal. Chem., 26 (2007) 515–533.
- R. Pashaei, R. Dzingelevičienė, S. Abbasi, M. Szultka-Młyńska,
B. Buszewski, Determination of the pharmaceuticals–nano/microplastics in aquatic systems by analytical and instrumental
methods, Environ. Monit. Assess., 194 (2022), doi: 10.1007/s10661-022-09751-w.
- E. O’Sullivan-Carroll, S. Howlett, C. Pyne, P. Downing,
A. Rafael, M. Lynch, A.M. Hogan, E.J. Moore, Determination
of pharmaceuticals in surface and wastewater by capillary
electrophoresis (CE): a minireview, Anal. Lett., 55 (2022)
495–504.
- N. Kumar, M. Rana, M. Geiwitz, N.I. Khan, M. Catalano,
J.C. Ortiz-Marquez, H. Kitadai, A. Weber, B. Dweik, X. Ling,
A.A. Argun, K.S. Burch, Rapid, multianalyte detection of
opioid metabolites in wastewater, ACS Nano, 16 (2022)
3704–3714.
- A. Kulkarni, S.E. Miller, Chapter 2 – Analysis of Pharmaceuticals
in the Environment, M. Török, Ed., Contemporary Chemical
Approaches for Green and Sustainable Drugs: Advances in
Green and Sustainable Chemistry, Elsevier, 2022, pp. 27–45.
doi: 10.1016/B978-0-12-822248-5.00009-7.
- F. Merlo, A. Speltini, F. Maraschi, M. Sturini, A. Profumo,
HPLC-MS/MS multiclass determination of steroid hormones
in environmental waters after preconcentration on the
carbonaceous sorbent HA-C@silica, Arabian J. Chem., 13 (2020)
4673–4680.
- K. Zhang, K. Fent, Determination of two progestin metabolites
(17α-hydroxypregnanolone and pregnanediol) and different
classes of steroids (androgens, estrogens, corticosteroids,
progestins) in rivers and wastewaters by high-performance
liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), Sci. Total Environ., 610–611 (2018) 1164–1172.
- C. Payus, C. John, V.L. Wan, T.W. Hsiang, W.N. Kui, Occurrence
of steroid sex hormone progesterone in influent and effluent
of oxidation pond and the river outlet of wastewater
treatment case study, J. Environ. Sci. Technol., 9 (2016) 399–406.
- K.M. Shimko, J.W. O’Brien, L. Barron, H. Kayalar, J.F. Mueller,
B.J. Tscharke, P.M. Choi, H. Jiang, G. Eaglesham, K.V. Thomas,
A pilot wastewater-based epidemiology assessment of anabolic
steroid use in Queensland, Australia, Drug Test. Anal.,
11 (2019) 937–949.
- P.L. Ferguson, C.R. Iden, A.E. McElroy, B.J. Brownawell,
Determination of steroid estrogens in wastewater
by immunoaffinity extraction coupled with HPLC -
electrospray-MS, Anal. Chem., 73 (2001) 3890–3895.
- R. Guedes-Alonso, S. Santana-Viera, S. Montesdeoca-
Esponda, C. Afonso-Olivares, Z. Sosa-Ferrera, J.J. Santana-
Rodríguez, Application of microwave-assisted extraction
and ultra-high performance liquid chromatography–tandem
mass spectrometry for the analysis of sex hormones and
corticosteroids in sewage sludge samples, Anal. Bioanal.
Chem., 408 (2016) 6833–6844.
- V.L. Louros, D.L.D. Lima, J.H. Leitão, V.I. Esteves, H.G. Nadais,
Determination of estrone and
17α-ethinylestradiol in
digested sludge by ultrasonic liquid extraction and highperformance
liquid chromatography with fluorescence
detection, J. Sep. Sci., 42 (2019) 1585–1592.
- M.C. Herghelegiu, A. Ernault, M.S. Beldean-Galea,
M.V. Coman, HPLC-PDA versus GC-MS in the analysis of
paracetamol and non-steroidal anti-inflammatory drugs in
wastewater, Studia Univ. Babes-Bolyai Chemia, 2023 (2023)
19–35.
- M.A.R. Korashy, S.A.A. Gawad, N.Y. Hassan, M. Abdelkawy,
Solid-phase extraction and simultaneous chromatographic
quantification of some non-steroidal anti-inflammatory
drug residues; an application in pharmaceutical industrial
wastewater effluent, Braz. J. Pharm. Sci., 58 (2022),
doi: 10.1590/s2175-97902022e18691.
- G. Peña-Velasco, L. Hinojosa-Reyes, M. Escamilla-Coronado,
G. Turnes-Palomino, C. Palomino-Cabello, J.L. Guzmán-Mar,
Iron metal-organic framework supported in a polymeric
membrane for solid-phase extraction of anti-inflammatory
drugs, Anal. Chim. Acta, 1136 (2020) 157–167.
- S. Triñanes, M.C. Casais, M.C. Mejuto, R. Cela, Matrix
solid-phase dispersion followed by liquid chromatography
tandem mass spectrometry for the determination of selective
ciclooxygenase-2 inhibitors in sewage sludge samples,
J. Chromatogr. A, 1462 (2016) 35–43.
- A. Becze, M.-A. Resz, A. Ilea, O. Cadar, A validated HPLC
multichannel DAD method for the simultaneous determination
of amoxicillin and doxycycline in pharmaceutical formulations
and wastewater samples, Appl. Sci. (Switzerland),
12 (2022), doi: 10.3390/app12199789.
- M. Daliri, S. Martinez-Morcillo, M. Sharifinia, G. Javdan,
M. Keshavarzifard, Occurrence and ecological risk assessment
of antibiotic residues in urban wastewater discharged
into the coastal environment of the Persian Gulf (the case
of Bandar Abbas), Environ. Monit. Assess., 194 (2022),
doi: 10.1007/s10661-022-10579-7.
- K. He, L. Blaney, Systematic optimization of an SPE with
HPLC-FLD method for fluoroquinolone detection in
wastewater, J. Hazard. Mater., 282 (2015) 96–105.
- A.C. Faleye, A.A. Adegoke, K. Ramluckan, J. Fick, F. Bux,
T.A. Stenström, Concentration and reduction of antibiotic
residues in selected wastewater treatment plants and
receiving waterbodies in Durban, South Africa, Sci. Total
Environ., 678 (2019) 10–20.
- S. Santana-Viera, P. Hernández-Arencibia, Z. Sosa-Ferrera,
J.J. Santana-Rodríguez, Simultaneous and systematic
analysis of cytostatic drugs in wastewater samples by ultrahigh
performance liquid chromatography tandem mass
spectrometry, J. Chromatogr., B, 1110–1111 (2019) 124–132.
- J. Martín, D. Camacho-Muñoz, J.L. Santos, I. Aparicio,
E. Alonso, Simultaneous determination of a selected group
of cytostatic drugs in water using high-performance liquid
chromatography-triple-quadrupole mass spectrometry,
J. Sep. Sci., 34 (2011) 3166–3177.
- L. Patrolecco, N. Ademollo, P. Grenni, A. Tolomei, A. Barra
Caracciolo, S. Capri, Simultaneous determination of human
pharmaceuticals in water samples by solid-phase extraction
and HPLC with UV-fluorescence detection, Microchem. J.,
107 (2013) 165–171.
- M.Q. Cai, R. Wang, L. Feng, L.Q. Zhang, Determination of
selected pharmaceuticals in tap water and drinking water
treatment plant by high-performance liquid chromatographytriple
quadrupole mass spectrometer in Beijing, China,
Environ. Sci. Pollut. Res., 22 (2015) 1854–1867.
- M.S. Beldean-Galea, R. Klein, M.V. Coman, Simultaneous
determination of four nonsteroidal anti-inflammatory
drugs and three estrogen steroid hormones in wastewater
samples by dispersive liquid-liquid microextraction based
on solidification of floating organic droplet and HPLC, J.
AOAC Int., 103 (2020) 392–398.
- S. Mohapatra, D. Snow, P. Shea, A. Gálvez-Rodríguez, M. Kumar,
L.P. Padhye, S. Mukherji, Photodegradation of a mixture
of five pharmaceuticals commonly found in wastewater:
experimental and computational analysis, Environ. Res.,
216 (2023) 114659, doi: 10.1016/j.envres.2022.114659.
- A.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón,
N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hernández, An investigation
into the occurrence and removal of pharmaceuticals in
Colombian wastewater, Sci. Total Environ., 642 (2018) 842–853.
- G.A. Abdallat, E. Salameh, M. Shteiwi, S. Bardaweel,
Pharmaceuticals as emerging pollutants in the reclaimed
wastewater used in irrigation and their effects on plants,
soils, and groundwater, Water (Switzerland), 14 (2022), doi:
10.3390/w14101560.
- G. Lasarte-Aragonés, A. Álvarez-Lueje, R. Salazar, C. Toledo-Neira, Application of switchable hydrophobicity solvents
for extraction of emerging contaminants in wastewater
samples, Molecules, 25 (2020), doi: 10.3390/molecules25010086.
- K.S. Foppe, E.B. Kujawinski, C. Duvallet, N. Endo, T.B. Erickson,
P.R. Chai, M. Matus, Analysis of 39 drugs and metabolites,
including 8 glucuronide conjugates, in an upstream
wastewater network via HPLC-MS/MS, J. Chromatogr., B,
1176 (2021) 122747, doi: 10.1016/j.jchromb.2021.122747.
- K. Proctor, B. Petrie, R. Barden, T. Arnot, B. Kasprzyk-Hordern,
Multi-residue ultra-performance liquid chromatography
coupled with tandem mass spectrometry method for
comprehensive multi-class anthropogenic compounds of
emerging concern analysis in a catchment-based exposuredriven
study, Anal. Bioanal. Chem., 411 (2019) 7061–7086.
- M.P. Schlüsener, K. Bester, Determination of steroid
hormones, hormone conjugates and macrolide antibiotics in
influents and effluents of sewage treatment plants utilising
high-performance liquid chromatography/tandem mass
spectrometry with electrospray and atmospheric pressure
chemical ionisation, Rapid Commun. Mass Spectrom.,
19 (2005) 3269–3278.
- L. Berthod, G. Roberts, D.C. Whitley, A. Sharpe, G.A. Mills,
A solid-phase extraction method for rapidly determining the
adsorption coefficient of pharmaceuticals in sewage sludge,
Water Res., 67 (2014) 292–298.
- S. Santana-Viera, J. Tuček, M.E. Torres-Padrón, Z. Sosa-Ferrera,
J.J. Santana-Rodríguez, R. Halko, Cytostatic compounds
in sludge and sediment: extraction and determination
by a combination of microwave-assisted extraction and
UHPLC-MS/MS, Anal. Bioanal. Chem., 412 (2020) 3639–3651.
- Y. Yu, Q. Huang, J. Cui, K. Zhang, C. Tang, X. Peng,
Determination of pharmaceuticals, steroid hormones, and
endocrine-disrupting personal care products in sewage
sludge by ultra-high-performance liquid chromatographytandem
mass spectrometry, Anal. Bioanal. Chem., 399 (2011)
891–902.
- C. vom Eyser, K. Palmu, R. Otterpohl, T.C. Schmidt, J. Tuerk,
Determination of pharmaceuticals in sewage sludge and
biochar from hydrothermal carbonization using different
quantification approaches and matrix effect studies, Anal.
Bioanal. Chem., 407 (2015) 821–830.
- L. Martín-Pozo, B. de Alarcón-Gómez, R. Rodríguez-Gómez,
M.T. García-Córcoles, M. Çipa, A. Zafra-Gómez, Analytical
methods for the determination of emerging contaminants in
sewage sludge samples. A review, Talanta, 192 (2019) 508–533.
- O.J. Ajala, J.O. Tijani, R.B. Salau, A.S. Abdulkareem,
O.S. Aremu, A review of emerging micro-pollutants in
hospital wastewater: environmental fate and remediation
options, Results Eng., 16 (2022) 100671, doi: 10.1016/J.RINENG.2022.100671.
- B. Petrie, J. Youdan, R. Barden, B. Kasprzyk-Hordern, Multiresidue
analysis of 90 emerging contaminants in liquid and
solid environmental matrices by ultra-high-performance
liquid chromatography tandem mass spectrometry,
J. Chromatogr., A, 1431 (2016) 64–78.
- S.E. Evans, P. Davies, A. Lubben, B. Kasprzyk-Hordern,
Determination of chiral pharmaceuticals and illicit drugs in
wastewater and sludge using microwave assisted extraction,
solid-phase extraction and chiral liquid chromatography
coupled with tandem mass spectrometry, Anal. Chim. Acta,
882 (2015) 112–126.
- W. Bolesta, M. Głodniok, K. Styszko, From sewage sludge to
the soil—transfer of pharmaceuticals: a review, Int. J. Environ.
Res. Public Health, 19 (2022), doi: 10.3390/ijerph191610246.
- S. Ferhi, M. Bourdat-Deschamps, J.J. Daudin, S. Houot,
S. Nélieu, Factors influencing the extraction of pharmaceuticals
from sewage sludge and soil: an experimental design
approach, Anal. Bioanal. Chem., 408 (2016) 6153–6168.
- E. Ngumba, P. Kosunen, A. Gachanja, T. Tuhkanen,
A multiresidue analytical method for trace level determination
of antibiotics and antiretroviral drugs in wastewater and
surface water using SPE-LC-MS/MS and matrix-matched
standards, Anal. Methods, 8 (2016) 6720–6729.
- C. Hao, X. Zhao, P. Yang, GC-MS and HPLC-MS analysis of
bioactive pharmaceuticals and personal-care products in
environmental matrices, TrAC, Trends Anal. Chem., 26 (2007)
569–580.
- E. Simon, A. Schifferli, T.B. Bucher, D. Olbrich, I. Werner,
E.L.M. Vermeirssen, Solid-phase extraction of estrogens
and herbicides from environmental waters for bioassay
analysis—effects of sample volume on recoveries,
Anal. Bioanal. Chem., 411 (2019) 2057–2069.
- A.R. Ribeiro, A.S. Maia, I.S. Moreira, C.M. Afonso,
P.M.L. Castro, M.E. Tiritan, Enantioselective quantification
of fluoxetine and norfluoxetine by HPLC in wastewater
effluents, Chemosphere, 95 (2014) 589–596.
- P. Žuvela, M. Skoczylas, J. Jay Liu, T. Baczek, R. Kaliszan,
M.W. Wong, B. Buszewski, Column characterization and
selection systems in reversed-phase high-performance
liquid chromatography, Chem. Rev., 119 (2019) 3674–3729.
- T. Werres, T.C. Schmidt, T. Teutenberg, The influence
of injection volume on efficiency of microbore liquid
chromatography columns for gradient and isocratic elution,
J. Chromatogr., A, 1641 (2021) 461965, doi: 10.1016/J.CHROMA.2021.461965.
- O. Opriş, M.L. Soran, V. Coman, F. Copaciu, D. Ristoiu,
Determination of some frequently used antibiotics in
wastewaters using solid-phase extraction followed by high
performance liquid chromatography with diode array and
mass spectrometry detection, Cent. Eur. J. Chem., 11 (2013)
1343–1351.
- S. Babić, D. Ašperger, D. Mutavdžić, A.J.M. Horvat,
M. Kaštelan-Macan, Solid-phase extraction and HPLC
determination of veterinary pharmaceuticals in wastewater,
Talanta, 70 (2006) 732–738.
- I. Baranowska, B. Kowalski, Using HPLC Method with DAD
detection for the simultaneous determination of 15 drugs
in surface water and wastewater, Pol. J. Environ. Stud.,
20 (2011) 21–28.
- Y. Li, M.A. Taggart, C. McKenzie, Z. Zhang, Y. Lu, S. Pap,
S.W. Gibb, A SPE-HPLC-MS/MS method for the simultaneous
determination of prioritised pharmaceuticals and
EDCs with high environmental risk potential in freshwater,
J. Environ. Sci., 100 (2021) 18–27.
- J.L. Zhou, Y. Kang, Matrix effect in high-performance liquid
chromatography-tandem mass spectrometry analysis of
antibiotics in environmental water samples, J. Sep. Sci.,
36 (2013) 564–571.
- I.F. Carmona-Alvarado, M. de la L. Salazar-Cavazos,
N. Waksman de Torres, A. de Jesús Garza-Juarez, L. Naccha
Torres, J.F. Islas, N. Cavazos-Rocha, Proposal of an HPLC/UV/FLD screening method for the simultaneous determination
of ten antibiotics in environmental waters, Acta Chim. Slov.,
69 (2022) 49–59.
- S.M. Haque, H. Rahman, N. Rahman, S.N.H. Azmi, O. Ashwaq,
S.M. Wabaidur, M.R. Siddiqui, M. Alam, Application of Box–Behnken design combined response surface methodology
to optimize HPLC and spectrophotometric techniques for
quantifying febuxostat in pharmaceutical formulations and
spiked wastewater samples, Microchem. J., 184 (2023) 108191,
doi: 10.1016/j.microc.2022.108191.
- P.K. Sahu, N.R. Ramisetti, T. Cecchi, S. Swain, C.S. Patro,
J. Panda, An overview of experimental designs in HPLC
method development and validation, J. Pharm. Biomed.
Anal., 147 (2018) 590–611.