References

  1. N. Morin-Crini, E. Lichtfouse, G. Liu, V. Balaram, A.R.L. Ribeiro, Z. Lu, F. Stock, E. Carmona, M.R. Teixeira, L.A. Picos-Corrales, J.C. Moreno-Piraján, L. Giraldo, C. Li, A. Pandey, D. Hocquet, G. Torri, G. Crini, Worldwide cases of water pollution by emerging contaminants: a review, Environ. Chem. Lett., 20 (2022) 2311–2338.
  2. OECD, Pharmaceutical Residues in Freshwater, OECD, Paris, 2019. doi: 10.1787/c936f42d-en
  3. W.C. Li, Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil, Environ. Pollut., 187 (2014) 193–201.
  4. Y. Zhou, S. Wu, H. Zhou, H. Huang, J. Zhao, Y. Deng, H. Wang, Y. Yang, J. Yang, L. Luo, Chiral pharmaceuticals: environment sources, potential human health impacts, remediation technologies and future perspective, Environ. Int., 121 (2018) 523–537.
  5. T. aus der Beek, F.A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Pharmaceuticals in the environmentglobal occurrences and perspectives, Environ. Toxicol. Chem., 35 (2016) 823–835.
  6. J. Maculewicz, D. Kowalska, K. Świacka, M. Toński, P. Stepnowski, A. Białk-Bielińska, J. Dołżonek, Transformation products of pharmaceuticals in the environment: their fate, (eco)toxicity and bioaccumulation potential, Sci. Total Environ., 802 (2022) 149916, doi: 10.1016/J.SCITOTENV.2021.149916.
  7. N. Sammut Bartolo, L.M. Azzopardi, A. Serracino-Inglott, Pharmaceuticals and the environment, Early Human Dev., 155 (2021) 105218, doi: 10.1016/j.earlhumdev.2020.105218.
  8. P. Sathishkumar, R.A.A. Meena, T. Palanisami, V. Ashokkumar, T. Palvannan, F.L. Gu, Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota – a review, Sci. Total Environ., 698 (2020) 134057, doi: 10.1016/J.SCITOTENV.2019.134057.
  9. T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol. Lett., 131 (2002) 5–17.
  10. A. Kumar Mehata, M.N. Lakshmi Suseela, P. Gokul, A. Kumar Malik, M. Kasi Viswanadh, C. Singh, J. Selvin, M.S. Muthu, Fast and highly efficient liquid chromatographic methods for qualification and quantification of antibiotic residues from environmental waste, Microchem. J., 179 (2022) 107573, doi: 10.1016/J.MICROC.2022.107573.
  11. S. Pal, Z. Ahamed, P. Pal, Removal of antibiotics and pharmaceutically active compounds from water environment: experiments towards industrial scale up, Sep. Purif. Technol., 295 (2022) 121249, doi: 10.1016/j.seppur.2022.121249.
  12. T. Mackul’ak, S. Černanský, M. Fehér, L. Birošová, M. Gál, Pharmaceuticals, drugs, and resistant microorganisms — environmental impact on population health, Curr. Opin. Environ. Sci. Health, 9 (2019) 40–48.
  13. K. Samal, S. Mahapatra, M. Hibzur Ali, Pharmaceutical wastewater as emerging contaminants (EC): treatment technologies, impact on environment and human health, Energy Nexus, 6 (2022) 100076, doi: 10.1016/j.nexus.2022.100076.
  14. T.S. Oliveira, M. Murphy, N. Mendola, V. Wong, D. Carlson, L. Waring, Characterization of pharmaceuticals and personal care products in hospital effluent and wastewater influent/effluent by direct-injection LC-MS-MS, Sci. Total Environ., 518–519 (2015) 459–478.
  15. O.I. González Peña, M.Á. López Zavala, H. Cabral Ruelas, Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater, Int. J. Environ. Res. Public Health, 18 (2021) 1–37.
  16. R.I.L. Eggen, J. Hollender, A. Joss, M. Schärer, C. Stamm, Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants, Environ. Sci. Technol., 48 (2014) 7683–7689.
  17. D. Su, W. Ben, B.W. Strobel, Z. Qiang, Impacts of wastewater treatment plant upgrades on the distribution and risks of pharmaceuticals in receiving rivers, J. Hazard. Mater., 406 (2021) 124331, doi: 10.1016/j.jhazmat.2020.124331.
  18. J. Rogowska, M. Cieszynska-Semenowicz, W. Ratajczyk, L. Wolska, Micropollutants in treated wastewater, Ambio, 49 (2020) 487–503.
  19. C. Mejías, J. Martín, J.L. Santos, I. Aparicio, E. Alonso, Occurrence of pharmaceuticals and their metabolites in sewage sludge and soil: a review on their distribution and environmental risk assessment, Trends Environ. Anal. Chem., 30 (2021) e00125, doi: 10.1016/J.TEAC.2021.E00125.
  20. Q. Li, W. Wang, X. Jiang, D. Lu, Y. Zhang, J. Li, Analysis of the potential of reclaimed water utilization in typical inland cities in northwest China via system dynamics, J. Environ. Manage., 270 (2020) 110878, doi: 10.1016/J.JENVMAN.2020.110878.
  21. X. Ren, Y. Zhang, H. Chen, Graywater treatment technologies and reuse of reclaimed water for toilet flushing, Environ. Sci. Pollut. Res., 27 (2020) 34653–34663.
  22. Y. Deng, Y. Zhang, H. Ren, Multi-omic studies on the toxicity variations in effluents from different units of reclaimed water treatment, Water Res., 208 (2022) 117874, doi: 10.1016/J.WATRES.2021.117874.
  23. A. Poustie, Y. Yang, P. Verburg, K. Pagilla, D. Hanigan, Reclaimed wastewater as a viable water source for agricultural irrigation: a review of food crop growth inhibition and promotion in the context of environmental change, Sci. Total Environ., 739 (2020) 139756, doi: 10.1016/J.SCITOTENV.2020.139756.
  24. N.H. Tran, M. Reinhard, K.Y.H. Gin, Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review, Water Res., 133 (2018) 182–207.
  25. M. Pei, B. Zhang, Y. He, J. Su, K. Gin, O. Lev, G. Shen, S. Hu, State of the art of tertiary treatment technologies for controlling antibiotic resistance in wastewater treatment plants, Environ. Int., 131 (2019) 105026, doi: 10.1016/J.ENVINT.2019.105026.
  26. M. Ortúzar, M. Esterhuizen, D.R. Olicón-Hernández, J. González-López, E. Aranda, Pharmaceutical pollution in aquatic environments: a concise review of environmental impacts and bioremediation systems, Front. Microbiol., 13 (2022) 869332, doi: 10.3389/fmicb.2022.869332.
  27. N. Pérez-Lemus, R. López-Serna, S.I. Pérez-Elvira, E. Barrado, Analysis of 60 pharmaceuticals and personal care products in sewage sludge by ultra-high performance liquid chromatography and tandem mass spectroscopy, Microchem. J., 175 (2022) 107148, doi: 10.1016/j.microc.2021.107148.
  28. M. Ashfaq, Y. Li, Y. Wang, W. Chen, H. Wang, X. Chen, W. Wu, Z. Huang, C.P. Yu, Q. Sun, Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China, Water Res., 123 (2017) 655–667.
  29. X. Yang, R. Zou, K. Tang, H.R. Andersen, I. Angelidaki, Y. Zhang, Degradation of metoprolol from wastewater in a bioelectro- Fenton system, Sci. Total Environ., 771 (2021) 145385, doi: 10.1016/j.scitotenv.2021.145385.
  30. N. Villota, J.M. Lomas, L.M. Camarero, Study of the paracetamol degradation pathway that generates color and turbidity in oxidized wastewaters by photo-Fenton technology, J. Photochem. Photobiol., A, 329 (2016) 113–119.
  31. T.H. de O. Norte, R.B.P. Marcelino, F.H.A. Medeiros, R.P.L. Moreira, C.C. Amorim, R.M. Lago, Ozone oxidation of β-lactam antibiotic molecules and toxicity decrease in aqueous solution and industrial wastewaters heavily contaminated, Ozone Sci. Eng., 40 (2018) 385–391.
  32. P. Somathilake, J.A. Dominic, G. Achari, C.H. Langford, J.H. Tay, Degradation of carbamazepine by photo-assisted ozonation: influence of wavelength and intensity of radiation, Ozone Sci. Eng., 40 (2018) 113–121.
  33. J. Bohdziewicz, E. Kudlek, M. Dudziak, Influence of the catalyst type (TiO2 and ZnO) on the photocatalytic oxidation of pharmaceuticals in the aquatic environment, Desal. Water Treat., 57 (2016) 1552–1563.
  34. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, J. Li, Q.V. Ly, T.A.H. Nguyen, V.S. Tran, Applying a new pomelo peel derived biochar in microbial fell cell for enhancing sulfonamide antibiotics removal in swine wastewater, Bioresour. Technol., 318 (2020) 123886, doi: 10.1016/j.biortech.2020.123886.
  35. X.R. Jing, Y.Y. Wang, W.J. Liu, Y.K. Wang, H. Jiang, Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar, Chem. Eng. J., 248 (2014) 168–174.
  36. Y. Chen, J. Vymazal, T. Březinová, M. Koželuh, L. Kule, J. Huang, Z. Chen, Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands, Sci. Total Environ., 566–567 (2016) 1660–1669.
  37. D.Q. Zhang, T. Hua, R.M. Gersberg, J. Zhu, W.J. Ng, S.K. Tan, Carbamazepine and naproxen: fate in wetland mesocosms planted with Scirpus validus, Chemosphere, 91 (2013) 14–21.
  38. E. Neczaj, Fate of selected emerging contaminants in wastewater treatment systems, Desal. Water Treat., 199 (2020) 451–463.
  39. H. Wang, S. Wang, Y. Liu, Y. Fu, P. Wu, G. Zhou, Degradation of diclofenac by Fe(II)-activated bisulfite: kinetics, mechanism and transformation products, Chemosphere, 237 (2019) 124518, doi: 10.1016/J.CHEMOSPHERE.2019.124518.
  40. Z. Qiu, J. Sun, D. Han, F. Wei, Q. Mei, B. Wei, X. Wang, Z. An, X. Bo, M. Li, J. Xie, M. He, Ozonation of diclofenac in the aqueous solution: mechanism, kinetics and ecotoxicity assessment, Environ. Res., 188 (2020) 109713, doi: 10.1016/J.ENVRES.2020.109713.
  41. S. Poirier-Larabie, P.A. Segura, C. Gagnon, Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions, Sci. Total Environ., 557–558 (2016) 257–267.
  42. J. Scaria, P.V. Nidheesh, Pre-treatment of real pharmaceutical wastewater by heterogeneous Fenton and persulfate oxidation processes, Environ. Res., 217 (2023) 114786, doi: 10.1016/j.envres.2022.114786.
  43. N. Taoufik, W. Boumya, M. Achak, M. Sillanpää, N. Barka, Comparative overview of advanced oxidation processes and biological approaches for the removal pharmaceuticals, J. Environ. Manage., 288 (2021) 112404, doi: 10.1016/j.jenvman.2021.112404.
  44. A.O. Oluwole, E.O. Omotola, O.S. Olatunji, Pharmaceuticals and personal care products in water and wastewater: a review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation, BMC Chem., 14 (2020), doi: 10.1186/s13065-020-00714-1.
  45. D. Kanakaraju, B.D. Glass, M. Oelgemöller, Advanced oxidation process-mediated removal of pharmaceuticals from water: a review, J. Environ. Manage., 219 (2018) 189–207.
  46. J.O. Eniola, R. Kumar, M.A. Barakat, J. Rashid, A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment, J. Cleaner Prod., 356 (2022) 131826, doi: 10.1016/j.jclepro.2022.131826.
  47. M.A. Oturan, J.J. Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. a review, Crit. Rev. Env. Sci. Technol., 44 (2014) 2577–2641.
  48. I. Oller, S. Malato, J.A. Sánchez-Pérez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review, Sci. Total Environ., 409 (2011) 4141–4166.
  49. Contaminants of Emerging Concern including Pharmaceuticals and Personal Care Products, 2022. Available at https://www. epa.gov/wqc/contaminants-emerging-concern-includingpharmaceuticals-and-personal-care-products (Accessed February 3, 2023).
  50. Freshwater Signals, 2022. Available at https://www.eea. europa.eu/publications/zero-pollution/ecosystems/signals/freshwater (Accessed February 3, 2023).
  51. A. Küster, N. Adler, Pharmaceuticals in the environment: Scientific evidence of risks and its regulation, Philos. Trans. R. Soc. London, Ser. B, 369 (2014), doi: 10.1098/rstb.2013.0587.
  52. European Medicines Agency, Environmental Risk-Assessment of Medicines, 2015.
  53. M. Apreja, A. Sharma, S. Balda, K. Kataria, N. Capalash, P. Sharma, Antibiotic residues in environment: antimicrobial resistance development, ecological risks, and bioremediation, Environ. Sci. Pollut. Res., 29 (2022) 3355–3371.
  54. R.P. Bisognin, D.B. Wolff, E. Carissimi, O.D. Prestes, R. Zanella, T.R. Storck, B. Clasen, Potential environmental toxicity of sewage effluent with pharmaceuticals, Ecotoxicology, 29 (2020) 1315–1326.
  55. J. García, M.J. García-Galán, J.W. Day, R. Boopathy, J.R. White, S. Wallace, R.G. Hunter, A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: increasing removal with wetlands and reducing environmental impacts, Bioresour. Technol., 307 (2020) 123228, doi: 10.1016/J.BIORTECH.2020.123228.
  56. A. Barra Caracciolo, E. Topp, P. Grenni, Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review, J. Pharm. Biomed. Anal., 106 (2015) 25–36.
  57. Y. Ben, C. Fu, M. Hu, L. Liu, M.H. Wong, C. Zheng, Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review, Environ. Res., 169 (2019) 483–493.
  58. J. Denissen, B. Reyneke, M. Waso-Reyneke, B. Havenga, T. Barnard, S. Khan, W. Khan, Prevalence of ESKAPE pathogens in the environment: antibiotic resistance status, communityacquired infection and risk to human health, Int. J. Hyg. Environ. Health, 244 (2022) 114006, doi: 10.1016/J.IJHEH.2022.114006.
  59. J. Zhang, V.W.C. Chang, A. Giannis, J.Y. Wang, Removal of cytostatic drugs from aquatic environment: a review, Sci. Total Environ., 445–446 (2013) 281–298.
  60. M. Szopińska, J. Potapowicz, K. Jankowska, A. Luczkiewicz, O. Svahn, E. Björklund, C. Nannou, D. Lambropoulou, Ż. Polkowska, Pharmaceuticals and other contaminants of emerging concern in Admiralty Bay as a result of untreated wastewater discharge: status and possible environmental consequences, Sci. Total Environ., 835 (2022) 155400, doi: 10.1016/J.SCITOTENV.2022.155400.
  61. L. Lonappan, S.K. Brar, R.K. Das, M. Verma, R.Y. Surampalli, Diclofenac and its transformation products: environmental occurrence and toxicity – a review, Environ. Int., 96 (2016) 127–138.
  62. B. Bonnefille, E. Gomez, F. Courant, A. Escande, H. Fenet, Diclofenac in the marine environment: a review of its occurrence and effects, Mar. Pollut. Bull., 131 (2018) 496–506.
  63. J. Jan-Roblero, J.A. Cruz-Maya, Ibuprofen: toxicology and biodegradation of an emerging contaminant, Molecules, 28 (2023), doi: 10.3390/molecules28052097.
  64. D. Wojcieszyńska, U. Guzik, Naproxen in the environment: its occurrence, toxicity to nontarget organisms and biodegradation, Appl. Microbiol. Biotechnol., 104 (2020) 1849–1857.
  65. M. Parolini, Toxicity of the non-steroidal anti-inflammatory drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: a review, Sci. Total Environ., 740 (2020) 140043, doi: 10.1016/J. SCITOTENV.2020.140043.
  66. P. Izadi, P. Izadi, R. Salem, S.A. Papry, S. Magdouli, R. Pulicharla, S.K. Brar, Non-steroidal anti-inflammatory drugs in the environment: where were we and how far we have come?, Environ. Pollut., 267 (2020) 115370, doi: 10.1016/J.ENVPOL.2020.115370.
  67. T.I.A. Gouveia, I.H. Mota, A.M.T. Silva, A. Alves, M.S.F. Santos, Are cytostatic drugs in surface waters a potential threat?, Sci. Total Environ., 853 (2022) 158559, doi: 10.1016/J.SCITOTENV.2022.158559.
  68. M. Jureczko, J. Kalka, Cytostatic pharmaceuticals as water contaminants, Eur. J. Pharmacol., 866 (2020) 172816, doi: 10.1016/J.EJPHAR.2019.172816.
  69. T.I.A. Gouveia, A. Alves, M.S.F. Santos, New insights on cytostatic drug risk assessment in aquatic environments based on measured concentrations in surface waters, Environ. Int., 133 (2019) 105236, doi: 10.1016/J.ENVINT.2019.105236.
  70. C. Kleinert, S. Poirier-Larabie, C. Gagnon, C. André, F. Gagné, Occurrence and ecotoxicity of cytostatic drugs
    5-fluorouracil and methotrexate in the freshwater unionid Elliptio complanata, Comp. Biochem. Physiol. C: Toxicol. Pharmacol., 244 (2021) 109027, doi: 10.1016/J.CBPC.2021.109027.
  71. J.O. Ojoghoro, M.D. Scrimshaw, J.P. Sumpter, Steroid hormones in the aquatic environment, Sci. Total Environ., 792 (2021) 148306, doi: 10.1016/J.SCITOTENV.2021.148306.
  72. R. Zhong, H. Zou, J. Gao, T. Wang, Q. Bu, Z.L. Wang, M. Hu, Z. Wang, A critical review on the distribution and ecological risk assessment of steroid hormones in the environment in China, Sci. Total Environ., 786 (2021) 147452, doi: 10.1016/J.SCITOTENV.2021.147452.
  73. A. Puckowski, K. Mioduszewska, P. Łukaszewicz, M. Borecka, M. Caban, J. Maszkowska, P. Stepnowski, Bioaccumulation and analytics of pharmaceutical residues in the environment: a review, J. Pharm. Biomed. Anal., 127 (2016) 232–255.
  74. J.L. Santos, J. Martín, C. Mejías, I. Aparicio, E. Alonso, Pharmaceuticals and Their Metabolites in Sewage Sludge and Soils: Distribution and Environmental Risk Assessment, A. Núñez-Delgado, M. Arias-Estévez, Eds., Emerging Pollutants in Sewage Sludge and Soils, The Handbook of Environmental Chemistry, Vol. 114, Springer, Cham, 2022. doi: 10.1007/698_2022_847
  75. M. Klaic, F. Jirsa, 17α-Ethinylestradiol (EE2): concentrations in the environment and methods for wastewater treatment - an update, RSC Adv., 12 (2022) 12794–12805.
  76. B. Albero, C. Sánchez-Brunete, E. Miguel, R.A. Pérez, J.L. Tadeo, Analysis of natural-occurring and synthetic sexual hormones in sludge-amended soils by matrix solid-phase dispersion and isotope dilution gas chromatography-tandem mass spectrometry, J. Chromatogr. A, 1283 (2013) 39–45.
  77. I.A. Duarte, J. Fick, H.N. Cabral, V.F. Fonseca, Bioconcentration of neuroactive pharmaceuticals in fish: relation to lipophilicity, experimental design and toxicity in the aquatic environment, Sci. Total Environ., 812 (2022) 152543, doi: 10.1016/J.SCITOTENV.2021.152543.
  78. J.L. Wilkinson, A.B.A. Boxall, D.W. Kolpin, M. Milakovic, A. Chaumot, S. Seidensticker, M. Melling, A. Supriatin, S. Sherif, Pharmaceutical pollution of the world’s rivers, Proc. Natl. Acad. Sci. U.S.A., 119 (2023) e2113947119, doi: 10.1073/pnas.2113947119.
  79. G. Kaushik, M.A. Thomas, The potential association of psychoactive pharmaceuticals in the environment with human neurological disorders, Sustainable Chem. Pharm., 13 (2019) 100148, doi: 10.1016/j.scp.2019.100148.
  80. A. Kock, H.C. Glanville, A.C. Law, T. Stanton, L.J. Carter, J.C. Taylor, Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: a diatom perspective, Sci. Total Environ., 878 (2023) 162939, doi: 10.1016/J.SCITOTENV.2023.162939.
  81. J.P. Bavumiragira, J. Ge, H. Yin, Fate and transport of pharmaceuticals in water systems: a processes review, Sci. Total Environ., 823 (2022) 153635, doi: 10.1016/J.SCITOTENV.2022.153635.
  82. N. Pérez-Lemus, R. López-Serna, S.I. Pérez-Elvira, E. Barrado, Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: a critical review, Anal. Chim. Acta, 1083 (2019) 19–40.
  83. K. Miserli, C. Kosma, I. Konstantinou, Determination of pharmaceuticals and metabolites in sludge and hydrochar after hydrothermal carbonization using sonication— QuEChERS extraction method and UHPLC LTQ/Orbitrap MS, Environ. Sci. Pollut. Res., 30 (2023) 1686–1703.
  84. J. Park, C. Kim, Y. Hong, W. Lee, S. Lee, H. Chung, H. Kim, D.-H. Jeong, Determination of pharmaceuticals in solid samples in municipal wastewater treatment plants by online SPE LC-MS/MS using QuEChERS extraction, Environ. Monit. Assess., 193 (2021), doi: 10.1007/s10661-021-09069-z.
  85. G. Castro, I. Carpinteiro, I. Rodríguez, R. Cela, Determination of cardiovascular drugs in sewage sludge by matrix solid-phase dispersion and ultra-performance liquid chromatography tandem mass spectrometry, Anal. Bioanal. Chem., 410 (2018) 6807–6817.
  86. B. Tegegne, B.S. Chandravanshi, F. Zewge, L. Chimuka, Solidphase optimisation for simultaneous determination of thirteen pharmaceuticals in Ethiopian water samples with HPLCDAD detection: an initial assessment, Environ. Monit. Assess., 193 (2021, doi: 10.1007/s10661-021-08999-y.
  87. C.R. Ohoro, A.O. Adeniji, A.I. Okoh, O.O. Okoh, Distribution and chemical analysis of pharmaceuticals and personal care products (PPCPs) in the environmental systems: a review, Int. J. Environ. Res. Public Health, 16 (2019) 3026, doi: 10.3390/ ijerph16173026.
  88. D. Fatta, A. Achilleos, A. Nikolaou, S. Meriç, Analytical methods for tracing pharmaceutical residues in water and wastewater, TrAC, Trends Anal. Chem., 26 (2007) 515–533.
  89. R. Pashaei, R. Dzingelevičienė, S. Abbasi, M. Szultka-Młyńska, B. Buszewski, Determination of the pharmaceuticals–nano/microplastics in aquatic systems by analytical and instrumental methods, Environ. Monit. Assess., 194 (2022), doi: 10.1007/s10661-022-09751-w.
  90. E. O’Sullivan-Carroll, S. Howlett, C. Pyne, P. Downing, A. Rafael, M. Lynch, A.M. Hogan, E.J. Moore, Determination of pharmaceuticals in surface and wastewater by capillary electrophoresis (CE): a minireview, Anal. Lett., 55 (2022) 495–504.
  91. N. Kumar, M. Rana, M. Geiwitz, N.I. Khan, M. Catalano, J.C. Ortiz-Marquez, H. Kitadai, A. Weber, B. Dweik, X. Ling, A.A. Argun, K.S. Burch, Rapid, multianalyte detection of opioid metabolites in wastewater, ACS Nano, 16 (2022) 3704–3714.
  92. A. Kulkarni, S.E. Miller, Chapter 2 – Analysis of Pharmaceuticals in the Environment, M. Török, Ed., Contemporary Chemical Approaches for Green and Sustainable Drugs: Advances in Green and Sustainable Chemistry, Elsevier, 2022, pp. 27–45. doi: 10.1016/B978-0-12-822248-5.00009-7.
  93. F. Merlo, A. Speltini, F. Maraschi, M. Sturini, A. Profumo, HPLC-MS/MS multiclass determination of steroid hormones in environmental waters after preconcentration on the carbonaceous sorbent HA-C@silica, Arabian J. Chem., 13 (2020) 4673–4680.
  94. K. Zhang, K. Fent, Determination of two progestin metabolites (17α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), Sci. Total Environ., 610–611 (2018) 1164–1172.
  95. C. Payus, C. John, V.L. Wan, T.W. Hsiang, W.N. Kui, Occurrence of steroid sex hormone progesterone in influent and effluent of oxidation pond and the river outlet of wastewater treatment case study, J. Environ. Sci. Technol., 9 (2016) 399–406.
  96. K.M. Shimko, J.W. O’Brien, L. Barron, H. Kayalar, J.F. Mueller, B.J. Tscharke, P.M. Choi, H. Jiang, G. Eaglesham, K.V. Thomas, A pilot wastewater-based epidemiology assessment of anabolic steroid use in Queensland, Australia, Drug Test. Anal., 11 (2019) 937–949.
  97. P.L. Ferguson, C.R. Iden, A.E. McElroy, B.J. Brownawell, Determination of steroid estrogens in wastewater by immunoaffinity extraction coupled with HPLC - electrospray-MS, Anal. Chem., 73 (2001) 3890–3895.
  98. R. Guedes-Alonso, S. Santana-Viera, S. Montesdeoca- Esponda, C. Afonso-Olivares, Z. Sosa-Ferrera, J.J. Santana- Rodríguez, Application of microwave-assisted extraction and ultra-high performance liquid chromatography–tandem mass spectrometry for the analysis of sex hormones and corticosteroids in sewage sludge samples, Anal. Bioanal. Chem., 408 (2016) 6833–6844.
  99. V.L. Louros, D.L.D. Lima, J.H. Leitão, V.I. Esteves, H.G. Nadais, Determination of estrone and
    17α-ethinylestradiol in digested sludge by ultrasonic liquid extraction and highperformance liquid chromatography with fluorescence detection, J. Sep. Sci., 42 (2019) 1585–1592.
  100. M.C. Herghelegiu, A. Ernault, M.S. Beldean-Galea, M.V. Coman, HPLC-PDA versus GC-MS in the analysis of paracetamol and non-steroidal anti-inflammatory drugs in wastewater, Studia Univ. Babes-Bolyai Chemia, 2023 (2023) 19–35.
  101. M.A.R. Korashy, S.A.A. Gawad, N.Y. Hassan, M. Abdelkawy, Solid-phase extraction and simultaneous chromatographic quantification of some non-steroidal anti-inflammatory drug residues; an application in pharmaceutical industrial wastewater effluent, Braz. J. Pharm. Sci., 58 (2022),
    doi: 10.1590/s2175-97902022e18691.
  102. G. Peña-Velasco, L. Hinojosa-Reyes, M. Escamilla-Coronado, G. Turnes-Palomino, C. Palomino-Cabello, J.L. Guzmán-Mar, Iron metal-organic framework supported in a polymeric membrane for solid-phase extraction of anti-inflammatory drugs, Anal. Chim. Acta, 1136 (2020) 157–167.
  103. S. Triñanes, M.C. Casais, M.C. Mejuto, R. Cela, Matrix solid-phase dispersion followed by liquid chromatography tandem mass spectrometry for the determination of selective ciclooxygenase-2 inhibitors in sewage sludge samples, J. Chromatogr. A, 1462 (2016) 35–43.
  104. A. Becze, M.-A. Resz, A. Ilea, O. Cadar, A validated HPLC multichannel DAD method for the simultaneous determination of amoxicillin and doxycycline in pharmaceutical formulations and wastewater samples, Appl. Sci. (Switzerland), 12 (2022), doi: 10.3390/app12199789.
  105. M. Daliri, S. Martinez-Morcillo, M. Sharifinia, G. Javdan, M. Keshavarzifard, Occurrence and ecological risk assessment of antibiotic residues in urban wastewater discharged into the coastal environment of the Persian Gulf (the case of Bandar Abbas), Environ. Monit. Assess., 194 (2022), doi: 10.1007/s10661-022-10579-7.
  106. K. He, L. Blaney, Systematic optimization of an SPE with HPLC-FLD method for fluoroquinolone detection in wastewater, J. Hazard. Mater., 282 (2015) 96–105.
  107. A.C. Faleye, A.A. Adegoke, K. Ramluckan, J. Fick, F. Bux, T.A. Stenström, Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa, Sci. Total Environ., 678 (2019) 10–20.
  108. S. Santana-Viera, P. Hernández-Arencibia, Z. Sosa-Ferrera, J.J. Santana-Rodríguez, Simultaneous and systematic analysis of cytostatic drugs in wastewater samples by ultrahigh performance liquid chromatography tandem mass spectrometry, J. Chromatogr., B, 1110–1111 (2019) 124–132.
  109. J. Martín, D. Camacho-Muñoz, J.L. Santos, I. Aparicio, E. Alonso, Simultaneous determination of a selected group of cytostatic drugs in water using high-performance liquid chromatography-triple-quadrupole mass spectrometry, J. Sep. Sci., 34 (2011) 3166–3177.
  110. L. Patrolecco, N. Ademollo, P. Grenni, A. Tolomei, A. Barra Caracciolo, S. Capri, Simultaneous determination of human pharmaceuticals in water samples by solid-phase extraction and HPLC with UV-fluorescence detection, Microchem. J., 107 (2013) 165–171.
  111. M.Q. Cai, R. Wang, L. Feng, L.Q. Zhang, Determination of selected pharmaceuticals in tap water and drinking water treatment plant by high-performance liquid chromatographytriple quadrupole mass spectrometer in Beijing, China, Environ. Sci. Pollut. Res., 22 (2015) 1854–1867.
  112. M.S. Beldean-Galea, R. Klein, M.V. Coman, Simultaneous determination of four nonsteroidal anti-inflammatory drugs and three estrogen steroid hormones in wastewater samples by dispersive liquid-liquid microextraction based on solidification of floating organic droplet and HPLC, J. AOAC Int., 103 (2020) 392–398.
  113. S. Mohapatra, D. Snow, P. Shea, A. Gálvez-Rodríguez, M. Kumar, L.P. Padhye, S. Mukherji, Photodegradation of a mixture of five pharmaceuticals commonly found in wastewater: experimental and computational analysis, Environ. Res., 216 (2023) 114659, doi: 10.1016/j.envres.2022.114659.
  114. A.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón, N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hernández, An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater, Sci. Total Environ., 642 (2018) 842–853.
  115. G.A. Abdallat, E. Salameh, M. Shteiwi, S. Bardaweel, Pharmaceuticals as emerging pollutants in the reclaimed wastewater used in irrigation and their effects on plants, soils, and groundwater, Water (Switzerland), 14 (2022), doi: 10.3390/w14101560.
  116. G. Lasarte-Aragonés, A. Álvarez-Lueje, R. Salazar, C. Toledo-Neira, Application of switchable hydrophobicity solvents for extraction of emerging contaminants in wastewater samples, Molecules, 25 (2020), doi: 10.3390/molecules25010086.
  117. K.S. Foppe, E.B. Kujawinski, C. Duvallet, N. Endo, T.B. Erickson, P.R. Chai, M. Matus, Analysis of 39 drugs and metabolites, including 8 glucuronide conjugates, in an upstream wastewater network via HPLC-MS/MS, J. Chromatogr., B, 1176 (2021) 122747, doi: 10.1016/j.jchromb.2021.122747.
  118. K. Proctor, B. Petrie, R. Barden, T. Arnot, B. Kasprzyk-Hordern, Multi-residue ultra-performance liquid chromatography coupled with tandem mass spectrometry method for comprehensive multi-class anthropogenic compounds of emerging concern analysis in a catchment-based exposuredriven study, Anal. Bioanal. Chem., 411 (2019) 7061–7086.
  119. M.P. Schlüsener, K. Bester, Determination of steroid hormones, hormone conjugates and macrolide antibiotics in influents and effluents of sewage treatment plants utilising high-performance liquid chromatography/tandem mass spectrometry with electrospray and atmospheric pressure chemical ionisation, Rapid Commun. Mass Spectrom., 19 (2005) 3269–3278.
  120. L. Berthod, G. Roberts, D.C. Whitley, A. Sharpe, G.A. Mills, A solid-phase extraction method for rapidly determining the adsorption coefficient of pharmaceuticals in sewage sludge, Water Res., 67 (2014) 292–298.
  121. S. Santana-Viera, J. Tuček, M.E. Torres-Padrón, Z. Sosa-Ferrera, J.J. Santana-Rodríguez, R. Halko, Cytostatic compounds in sludge and sediment: extraction and determination by a combination of microwave-assisted extraction and UHPLC-MS/MS, Anal. Bioanal. Chem., 412 (2020) 3639–3651.
  122. Y. Yu, Q. Huang, J. Cui, K. Zhang, C. Tang, X. Peng, Determination of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in sewage sludge by ultra-high-performance liquid chromatographytandem mass spectrometry, Anal. Bioanal. Chem., 399 (2011) 891–902.
  123. C. vom Eyser, K. Palmu, R. Otterpohl, T.C. Schmidt, J. Tuerk, Determination of pharmaceuticals in sewage sludge and biochar from hydrothermal carbonization using different quantification approaches and matrix effect studies, Anal. Bioanal. Chem., 407 (2015) 821–830.
  124. L. Martín-Pozo, B. de Alarcón-Gómez, R. Rodríguez-Gómez, M.T. García-Córcoles, M. Çipa, A. Zafra-Gómez, Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review, Talanta, 192 (2019) 508–533.
  125. O.J. Ajala, J.O. Tijani, R.B. Salau, A.S. Abdulkareem, O.S. Aremu, A review of emerging micro-pollutants in hospital wastewater: environmental fate and remediation options, Results Eng., 16 (2022) 100671, doi: 10.1016/J.RINENG.2022.100671.
  126. B. Petrie, J. Youdan, R. Barden, B. Kasprzyk-Hordern, Multiresidue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry, J. Chromatogr., A, 1431 (2016) 64–78.
  127. S.E. Evans, P. Davies, A. Lubben, B. Kasprzyk-Hordern, Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry, Anal. Chim. Acta, 882 (2015) 112–126.
  128. W. Bolesta, M. Głodniok, K. Styszko, From sewage sludge to the soil—transfer of pharmaceuticals: a review, Int. J. Environ. Res. Public Health, 19 (2022), doi: 10.3390/ijerph191610246.
  129. S. Ferhi, M. Bourdat-Deschamps, J.J. Daudin, S. Houot, S. Nélieu, Factors influencing the extraction of pharmaceuticals from sewage sludge and soil: an experimental design approach, Anal. Bioanal. Chem., 408 (2016) 6153–6168.
  130. E. Ngumba, P. Kosunen, A. Gachanja, T. Tuhkanen, A multiresidue analytical method for trace level determination of antibiotics and antiretroviral drugs in wastewater and surface water using SPE-LC-MS/MS and matrix-matched standards, Anal. Methods, 8 (2016) 6720–6729.
  131. C. Hao, X. Zhao, P. Yang, GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices, TrAC, Trends Anal. Chem., 26 (2007) 569–580.
  132. E. Simon, A. Schifferli, T.B. Bucher, D. Olbrich, I. Werner, E.L.M. Vermeirssen, Solid-phase extraction of estrogens and herbicides from environmental waters for bioassay analysis—effects of sample volume on recoveries, Anal. Bioanal. Chem., 411 (2019) 2057–2069.
  133. A.R. Ribeiro, A.S. Maia, I.S. Moreira, C.M. Afonso, P.M.L. Castro, M.E. Tiritan, Enantioselective quantification of fluoxetine and norfluoxetine by HPLC in wastewater effluents, Chemosphere, 95 (2014) 589–596.
  134. P. Žuvela, M. Skoczylas, J. Jay Liu, T. Baczek, R. Kaliszan, M.W. Wong, B. Buszewski, Column characterization and selection systems in reversed-phase high-performance liquid chromatography, Chem. Rev., 119 (2019) 3674–3729.
  135. T. Werres, T.C. Schmidt, T. Teutenberg, The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution, J. Chromatogr., A, 1641 (2021) 461965, doi: 10.1016/J.CHROMA.2021.461965.
  136. O. Opriş, M.L. Soran, V. Coman, F. Copaciu, D. Ristoiu, Determination of some frequently used antibiotics in wastewaters using solid-phase extraction followed by high performance liquid chromatography with diode array and mass spectrometry detection, Cent. Eur. J. Chem., 11 (2013) 1343–1351.
  137. S. Babić, D. Ašperger, D. Mutavdžić, A.J.M. Horvat, M. Kaštelan-Macan, Solid-phase extraction and HPLC determination of veterinary pharmaceuticals in wastewater, Talanta, 70 (2006) 732–738.
  138. I. Baranowska, B. Kowalski, Using HPLC Method with DAD detection for the simultaneous determination of 15 drugs in surface water and wastewater, Pol. J. Environ. Stud., 20 (2011) 21–28.
  139. Y. Li, M.A. Taggart, C. McKenzie, Z. Zhang, Y. Lu, S. Pap, S.W. Gibb, A SPE-HPLC-MS/MS method for the simultaneous determination of prioritised pharmaceuticals and EDCs with high environmental risk potential in freshwater, J. Environ. Sci., 100 (2021) 18–27.
  140. J.L. Zhou, Y. Kang, Matrix effect in high-performance liquid chromatography-tandem mass spectrometry analysis of antibiotics in environmental water samples, J. Sep. Sci., 36 (2013) 564–571.
  141. I.F. Carmona-Alvarado, M. de la L. Salazar-Cavazos, N. Waksman de Torres, A. de Jesús Garza-Juarez, L. Naccha Torres, J.F. Islas, N. Cavazos-Rocha, Proposal of an HPLC/UV/FLD screening method for the simultaneous determination of ten antibiotics in environmental waters, Acta Chim. Slov., 69 (2022) 49–59.
  142. S.M. Haque, H. Rahman, N. Rahman, S.N.H. Azmi, O. Ashwaq, S.M. Wabaidur, M.R. Siddiqui, M. Alam, Application of Box–Behnken design combined response surface methodology to optimize HPLC and spectrophotometric techniques for quantifying febuxostat in pharmaceutical formulations and spiked wastewater samples, Microchem. J., 184 (2023) 108191, doi: 10.1016/j.microc.2022.108191.
  143. P.K. Sahu, N.R. Ramisetti, T. Cecchi, S. Swain, C.S. Patro, J. Panda, An overview of experimental designs in HPLC method development and validation, J. Pharm. Biomed. Anal., 147 (2018) 590–611.