References
  -  R. Semiat, Energy issues in desalination processes, Environ. Sci.
    Technol., 42 (2008) 8193–8201. 
-  S.M. Montazeri, G. Kolliopoulos, Hydrate based desalination
    for sustainable water treatment: a review, Desalination,
    537 (2022) 115855, doi: 10.1016/j.desal.2022.115855. 
-  R. Alrowais, M.W. Shahzad, M. Burhan, M.T. Bashir, Q. Chen,
    B.B. Xu, M. Kumja, C.N. Markides, K.C. Ng, 
 A thermally-driven
    seawater desalination system: proof of concept and vision for
    future sustainability, Case Stud. Therm. Eng., 35 (2022) 102084,
    doi: 10.1016/j.csite.2022.102084.
-  N.P.B. Tan, P.M.L. Ucab, G.C. Dadol, L.M. Jabile, I.N. Talili,
    M.T.I. Cabaraban, A review of desalination technologies and
    its impact in the Philippines, Desalination, 534 (2022) 115805,
    doi: 10.1016/j.desal.2022.115805. 
-  H. Xu, S. Jiang, M.X. Xie, T. Jia, Y.J. Dai, Technical improvements
    and perspectives on humidification-dehumidification
    desalination — a review, Desalination, 541 (2022) 116029,
    doi: 10.1016/j.desal.2022.116029. 
-  J. Zheng, F. Cheng, Y. Li, X. Lü, M. Yang, Progress and trends in
    hydrate-based desalination (HBD) technology: a review, Chin.
    J. Chem. Eng., 27 (2019) 2037–2043. 
-  D. Grey, D. Garrick, D. Blackmore, J. Kelman, M. Muller,
    C. Sadoff, Water security in one blue planet: twenty-first
    century policy challenges for science, Philos. Trans. R. Soc.
    London, Ser. A, 371 (2013) 0406, doi: 10.1098/rsta.2012.0406. 
-  UNESCO, Water Reuse Within a Circular Economy Context,
    United Nations Educational, Scientific and Cultural
    Organization (UNESCO), 2020. 
-  UNDESA, The United Nations Water Scarcity, International
    Decade for Action “Water For Life” 2005–2015, United Nations
    Department of Economic and Social Affairs (UNDESA), 2015. 
-  I. Prihatiningtyas, A.-H.A.H. Al-Kebsi, Y. Hartanto,
    T.M. Zewdie, B. Van der Bruggen, Techno-economic assessment
    of pervaporation desalination of hypersaline water,
    Desalination, 527 (2022) 115538, doi: 10.1016/j.desal.2021.115538. 
-  H. Zheng, General Problems in Seawater Desalination, In: Solar
    Energy Desalination Technology, 2017, pp. 1–46. 
-  H.T. El-Dessouky, H.M. Ettouney, Y. Al-Roumi, Multi-stage
    flash desalination: present and future outlook, Chem. Eng. J.,
    73 (1999) 173–190. 
-  B. Peñate, L. García-Rodríguez, Current trends and future
    prospects in the design of seawater reverse osmosis
    desalination technology, Desalination, 284 (2012) 1–8. 
-  N.I.H.A. Aziz, M.M. Hanafiah, Application of life cycle
    assessment for desalination: Progress, challenges and future
    directions, Environ. Pollut., 268 (2021) 115948, doi: 10.1016/j.envpol.2020.115948. 
-  J. Lee, K. Jo, J. Lee, S.P. Hong, S. Kim, J. Yoon, Rockingchair
    capacitive deionization for continuous brackish water
    desalination, ACS Sustainable Chem. Eng., 6 (2018) 10815–10822. 
-  X. Chen, F. Jiang, Q. Jiang, Y. Jia, C. Liu, G. Liu, J. Xu, X. Duan,
    C. Zhu, G. Nie, P. Liu, Conductive and flexible PEDOTdecorated
    paper as high performance electrode fabricated by
    vapor phase polymerization for supercapacitor, Colloids Surf.,
    A, 603 (2020) 126173, doi: 10.1016/j.colsurfa.2020.125173. 
-  Y. Yao, X.-h. Huang, B.-y. Zhang, Z. Zhang, D. Hou, Z.-k. Zhou,
    Facile fabrication of high sensitivity cellulose nanocrystals
    based QCM humidity sensors with asymmetric electrode
    structure, Sens. Actuators, B, 302 (2020) 127192, doi: 10.1016/j.snb.2019.127192. 
-  Y. Yang, Z. Shao, F. Wang, Preparation of Fe/N co-doped
    hierarchical porous carbon nanosheets derived from
    chitosan nanofibers for high-performance supercapacitors,
    J. Electrochem. Energy Convers. Storage, 19 (2021) 021009
    (8 pages), doi: 10.1115/1.4052316. 
-  C.J. Linnartz, A. Rommerskirchen, M. Wessling, Y. Gendel,
    Flow-electrode capacitive deionization for double displacement
    reactions, ACS Sustainable Chem. Eng., 5 (2017) 3906–3912. 
-  S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel,
    Review on the science and technology of water desalination by
    capacitive deionization, Prog. Mater. Sci., 58 (2013) 1388–1442. 
-  Y. Oren, Capacitive deionization (CDI) for desalination
    and water treatment — past, present and future (a review),
    Desalination, 228 (2008) 10–29. 
-  X. Gao, A. Omosebi, J. Landon, K. Liu, Surface charge
    enhanced carbon electrodes for stable and efficient capacitive
    deionization using inverted adsorption–desorption behavior,
    Energy Environ. Sci., 8 (2015) 897–909. 
-  A. Rommerskirchen, C.J. Linnartz, D. Müller, L.K. Willenberg,
    M. Wessling, Energy recovery and process design in
    continuous flow–electrode capacitive deionization processes,
    ACS Sustainable Chem. Eng., 6 (2018) 13007–13015. 
-  J. Kim, J. Kim, J.H. Kim, H.S. Park, Hierarchically open-porous
    nitrogen-incorporated carbon polyhedrons derived from
    metal-organic frameworks for improved CDI performance,
    Chem. Eng. J., 382 (2020) 122996, doi: 10.1016/j.cej.2019.122996. 
-  T. Yan, J. Liu, H. Lei, L. Shi, Z. An, H.S. Park, D. Zhang,
    Capacitive deionization of saline water using sandwich-like
    nitrogen-doped graphene composites via a self-assembling
    strategy, Environ. Sci.: Nano, 5 (2018) 2722–2730. 
-  X. Gong, S. Zhang, W. Luo, N. Guo, L. Wang, D. Jia, Z. Zhao,
    S. Feng, L. Jia, Enabling a large accessible surface area of a poredesigned
    hydrophilic carbon nanofiber fabric for ultrahigh
    capacitive deionization, ACS Appl. Mater. Interfaces, 12 (2020)
    49586–49595. 
-  H.Y. Yang, Z.J. Han, S.F. Yu, K.L. Pey, K. Ostrikov, R. Karnik,
    Carbon nanotube membranes with ultrahigh specific
    adsorption capacity for water desalination and purification,
    Nat. Commun., 4 (2013) 2220, doi: 10.1038/ncomms3220. 
-  H. Zhang, F. Zhang, Y. Wei, Q. Miao, A. Li, Y. Zhao, Y. Yuan,
    N. Jin, G. Li, Controllable design and preparation of hollow
    carbon-based nanotubes for asymmetric supercapacitors
    and capacitive deionization, ACS Appl. Mater. Interfaces,
    13 (2021) 21217–21230. 
-  C. Prehal, C. Koczwara, H. Amenitsch, V. Presser, O. Paris,
    Salt concentration and charging velocity determine ion charge
    storage mechanism in nanoporous supercapacitors, Nat.
    Commun., 9 (2018) 4145, doi: 10.1038/s41467-018-06612-4. 
-  M. Ding, S. Fan, S. Huang, M.E. Pam, L. Guo, Y. Shi,
    H.Y. Yang, Tunable pseudocapacitive behavior in metal–organic
	  framework-derived TiO2@porous carbon enabling highperformance
    membrane capacitive deionization, ACS Appl.
    Energy Mater., 2 (2019) 1812–1822. 
-  S. Wang, G. Wang, H. Song, S. Lv, T. Li, C. Li, In-situ formation
    of Prussian blue analogue nanoparticles decorated with threedimensional
    carbon nanosheet networks for superior hybrid
    capacitive deionization performance, ACS Appl. Mater.
    Interfaces, 12 (2020) 44049–44057. 
-  X. Wen, M. Zhao, Z. Zhao, X. Ma, M. Ye, Hierarchical and
    self-supported vanadium disulfide microstructures@graphite
    paper: an advanced electrode for efficient and durable
    asymmetric capacitive deionization, ACS Sustainable Chem.
    Eng., 8 (2020) 7335–7342. 
-  D. Desai, E.S. Beh, S. Sahu, V. Vedharathinam, Q. van
    Overmeere, C.F. de Lannoy, A.P. Jose, A.R. Völkel, J.B. Rivest,
    Electrochemical desalination of seawater and hypersaline
    brines with coupled electricity storage, ACS Energy Lett.,
    3 (2018) 375–379. 
-  V.M. Rangaraj, A.A. Edathil, Y.Y. Kannangara, J.-K. Song,
    M.A. Haija, F. Banat, Tamarind shell derived N-doped carbon
    for capacitive deionization (CDI) studies, J. Electroanal. Chem.,
    848 (2019) 113307, doi: 10.1016/j.jelechem.2019.113307. 
-  M. Chu, W. Tian, J. Zhao, M. Zou, Z. Lu, D. Zhang,
    J. Jiang, A comprehensive review of capacitive deionization
    technology with biochar-based electrodes: biochar-based
    electrode preparation, deionization mechanism and
    applications, Chemosphere, 301 (2022) 136024, doi: 10.1016/j.chemosphere.2022.136024. 
-  Cigarette Butt Waste, America Nonsmokers’ Rights Foundation
    [EB/OL], 2015. 
-  Q.Y. Dou, H.S. Park, Perspective on high-energy carbon-based
    supercapacitors, Energy Environ. Mater., 3 (2020) 286–305. 
-  J.S. Yeon, S.H. Park, J. Suk, H. Lee, H.S. Park, Confinement of
    sulfur in the micropores of honeycomb-like carbon derived
    from lignin for lithium-sulfur battery cathode, Chem. Eng. J.,
    382 (2020) 122946, doi: 10.1016/j.cej.2019.122946. 
-  H. Lei, T. Yan, H. Wang, L. Shi, J. Zhang, D. Zhang, Graphenelike
    carbon nanosheets prepared by a Fe-catalyzed glucoseblowing
    method for capacitive deionization, J. Mater. Chem. A,
    3 (2015) 5934–5941. 
-  W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human
    hair-derived carbon flakes for electrochemical supercapacitors,
    Energy Environ. Sci., 7 (2014) 379–386. 
-  L. Chang, J. Li, X. Duan, W. Liu, Porous carbon derived from
    metal–organic framework (MOF) for capacitive deionization
    electrode, Electrochim. Acta, 176 (2015) 956–964. 
-  Y. Liu, L. Pan, T. Chen, X. Xu, T. Lu, Z. Sun, D.H.C. Chua,
    Porous carbon spheres via microwave-assisted synthesis for
    capacitive deionization, Electrochim. Acta, 151 (2015) 489–496. 
-  J. Wang, S. Kaskel, KOH activation of carbon-based materials
    for energy storage, J. Mater. Chem., 22 (2012) 23710–23725. 
-  M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier,
    F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption
    of gases, with special reference to the evaluation of surface
    area and pore size distribution (IUPAC Technical Report),
    Pure Appl. Chem., 87 (2015) 1051–1069. 
-  J. Zhang, X. Zhang, Y. Zhou, S. Guo, K. Wang, Z. Liang,
    Q. Xu, Nitrogen-doped hierarchical porous carbon nanowhisker
    ensembles on carbon nanofiber for high-performance
    supercapacitors, ACS Sustainable Chem. Eng., 2 (2014) 1525–1533. 
-  M.S. Zoromba, M.H. Abdel-Aziz, M. Bassyouni, S. Gutub,
    D. Demko, A. Abdelkader, Electrochemical activation of graphene
    at low temperature: the synthesis of three-dimensional
    nanoarchitectures for high performance supercapacitors
    and capacitive deionization, ACS Sustainable Chem. Eng.,
    5 (2017) 4573–4581. 
-  L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for
    supercapacitors, Adv. Mater., 25 (2013) 3899–3904. 
-  G. Zheng, L. Hu, H. Wu, X. Xie, Y. Cui, Paper supercapacitors by
    a solvent-free drawing method, Energy Environ. Sci., 4 (2011)
    3368–3373. 
-  C. Zhao, G. Liu, N. Sun, X. Zhang, G. Wang, Y. Zhang, H. Zhang,
    H. Zhao, Biomass-derived N-doped porous carbon as electrode
    materials for Zn-air battery powered capacitive deionization,
    Chem. Eng. J., 334 (2018) 1270–1280. 
-  B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang, Y. Yang, Room
    temperature molten salt as electrolyte for carbon nanotubebased
    electric double layer capacitors, J. Power Sources,
    158 (2006) 773–778. 
-  R.K. Sharma, H.-S. Oh, Y.-G. Shul, H. Kim, Growth and
	  characterization of carbon-supported MnO2 nanorods for
    supercapacitor electrode, Physica B, 403 (2008) 1763–1769. 
-  L. Mao, H.S.O. Chan, J. Wu, Cetyltrimethylammonium bromide
    intercalated graphene/polypyrrole nanowire composites
    for high performance supercapacitor electrode, RSC Adv.,
    2 (2012) 10610–10617. 
-  A. Bello, F. Barzegar, D. Momodu, J. Dangbegnon, F. Taghizadeh,
    N. Manyala, Symmetric supercapacitors based on porous
    3D interconnected carbon framework, Electrochim. Acta,
    151 (2015) 386–392. 
-  D. Zhang, T. Yan, L. Shi, Z. Peng, X. Wen, J. Zhang, Enhanced
    capacitive deionization performance of graphene/carbon
    nanotube composites, J. Mater. Chem., 22 (2012) 14696–14704. 
-  K.T. Cho, S.B. Lee, J.W. Lee, Facile synthesis of highly
    electrocapacitive nitrogen-doped graphitic porous carbons,
    J. Phys. Chem. C, 118 (2014) 9357–9367. 
-  K.-B. Li, D.-W. Shi, Z.-Y. Cai, G.-L. Zhang, Q.-A. Huang,
    D. Liu, C.-P. Yang, Studies on the equivalent serial resistance
    of carbon supercapacitor, Electrochim. Acta, 174 (2015)
    596–600. 
-  Z. Chen, C. Song, X. Sun, H. Guo, G. Zhu, Kinetic and isotherm
    studies on the electrosorption of NaCl from aqueous solutions
    by activated carbon electrodes, Desalination, 267 (2011)
    239‒243.