References

  1. H. Xu, Q. Gao, B. Yuan, Analysis and identification of pollution sources of comprehensive river water quality: evidence from two river basins in China, Ecol. Indic., 135 (2022) 108561, doi: 10.1016/j.ecolind.2022.108561.
  2. S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye wastewater, J. Chem. Technol. Biotechnol., 86 (2011) 1130–1158.
  3. E. Santoso, R. Ediati, Y. Kusumawati, H. Bahruji, D.O. Sulistiono, D. Prasetyoko, Review on recent advances of carbon-based adsorbent for methylene blue removal from wastewater, Mater. Today Chem., 16 (2020) 100233, doi: 10.1016/j.mtchem.2019.100233.
  4. S. Alvarez-Torrellas, M. Boutahala, N. Boukhalfa, M. Munoz, Effective adsorption of methylene blue dye onto magnetic nanocomposites. Modeling and reuse studies, Appl. Sci. (Switzerland), 9 (2019), doi: 10.3390/app9214563.
  5. G.M. Ziarani, R. Moradi, N. Lashgari, H.G. Kruger, Chapter 14 – Rhodamine Dyes, G.M. Ziarani, R. Moradi, N. Lashgari, H.G. Kruger, Eds., Metal-Free Synthetic Organic Dyes, Elsevier, 2018, pp. 185–191.
    doi: 10.1016/ b978-0-12-815647-6.00014-5
  6. E.E. Mbu, D. Dodoo-arhin, S.K. Ntwampe, E. Malenga, E. Fossokankeu, Photocatalytic Degradation of Azo and Rhodamine Dyes Using Copper(II) Oxide Nanoparticles, 10th Int’l Conference on Advances in Science, Engineering, Technology & Healthcare (ASETH-18) Nov. 19–20, Cape Town (South Africa), 2018. doi: 10.17758/eares4.eap1118210
  7. W. Zheng, S. You, Y. Yao, L. Jin, Y. Liu, Development of atomic hydrogen-mediated electrocatalytic filtration system for peroxymonosulfate activation towards ultrafast degradation of emerging organic contaminants, Appl. Catal., B, 298 (2021) 120593, doi: 10.1016/j.apcatb.2021.120593.
  8. P.K. Rai, C. Sonne, R.J.C. Brown, S.A. Younis, K.-H. Kim, Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes, J. Hazard. Mater., 427 (2022) 127903, doi: 10.1016/j.jhazmat.2021.127903.
  9. A. Koubová, T. Van Nguyen, K. Grabicová, V. Burkina, F.G. Aydin, R. Grabic, P. Nováková, H. Švecová, P. Lepič, G. Fedorova, T. Randák, V. Žlábek, Metabolome adaptation and oxidative stress response of common carp (Cyprinus carpio) to altered water pollution levels, Environ. Pollut., 303 (2022) 119117, doi: 10.1016/j.envpol.2022.119117.
  10. Y. Zhao, Y. Wang, H. Chi, Y. Zhang, C. Sun, H. Wei, R. Li, Coupling photocatalytic water oxidation on decahedron BiVO4 crystals with catalytic wet peroxide oxidation for removing organic pollutions in wastewater, Appl. Catal., B, 318 (2022) 121858, doi: 10.1016/j.apcatb.2022.121858.
  11. Y. Sun, D. Li, X. Lu, J. Sheng, X. Zheng, X. Xiao, Flocculation of combined contaminants of dye and heavy metal by nanochitosan flocculants, J. Environ. Manage., 299 (2021) 113589, doi: 10.1016/j.jenvman.2021.113589.
  12. C. Liu, M. Zhang, H. Gao, L. Kong, S. Fan, L. Wang, H. Shao, M. Long, X. Guo, Cyclic coupling of photocatalysis and adsorption for completely safe removal of N-nitrosamines in water, Water Res., 209 (2022) 117904, doi: 10.1016/j.watres.2021.117904.
  13. H. Wang, Y. Yang, Z. Zhou, X. Li, J. Gao, R. Yu, J. Li, N. Wang, H. Chang, Photocatalysis-enhanced coagulation for removal of intracellular organic matter from Microcystis aeruginosa: efficiency and mechanism, Sep. Purif. Technol., 283 (2022) 120192, doi: 10.1016/j.seppur.2021.120192.
  14. A. Karami, R. Monsef, M.R. Shihan, L.Y. Qassem, M.W. Falah, M. Salavati-Niasari, UV-light-induced photocatalytic response of Pechini sol–gel synthesized erbium vanadate nanostructures toward degradation of colored pollutants, Environ. Technol. Innovation, 28 (2022) 102947, doi: 10.1016/j.eti.2022.102947.
  15. L. Pan, Z. Wan, Q. Feng, J. Wang, J. Xiong, S. Wang, H. Zhu, G. Chen, Biofilm response and removal via the coupling of visible-light-driven photocatalysis and biodegradation in an environment of sulfamethoxazole and Cr(VI), J. Environ. Sci., 122 (2022) 50–61.
  16. A. Saravanan, P. Senthil Kumar, S. Jeevanantham, M. Anubha, S. Jayashree, Degradation of toxic agrochemicals and pharmaceutical pollutants: effective and alternative approaches toward photocatalysis, Environ. Pollut., 298 (2022) 118844, doi: 10.1016/j.envpol.2022.118844.
  17. M.P. Gonullu, Design and characterization of single bilayer ZnO/Al2O3 film by ultrasonically spray pyrolysis and its application in photocatalysis, Micro Nanostruct., 164 (2022) 107113, doi: 10.1016/j.spmi.2021.107113.
  18. P. Nandi, D. Das, ZnO/CdS/CuS heterostructure: a suitable candidate for applications in visible-light photocatalysis, J. Phys. Chem. Solids, 160 (2022) 110344, doi: 10.1016/j.jpcs.2021.110344.
  19. S.H. Park, T. Kim, A.N. Kadam, C. Bathula, A.A. Ghfar, H. Kim, S.-W. Lee, Synergistic photocatalysis of Z-scheme type Fe2O3/g-C3N4 heterojunction coupled with reduced graphene oxide, Surf. Interfaces, 30 (2022) 101910, doi: 10.1016/j.surfin.2022.101910.
  20. Q. Zhang, X. Zhao, L. Duan, H. Shen, R. Liu, Controlling oxygen vacancies and enhanced visible light photocatalysis of CeO2/ZnO nanocomposites, J. Photochem. Photobiol., A, 392 (2020) 112156, doi: 10.1016/j.jphotochem.2019.112156.
  21. D. Xu, H. Ma, Degradation of rhodamine B in water by ultrasound-assisted TiO2 photocatalysis, J. Cleaner Prod., 313 (2021) 127758, doi: 10.1016/j.jclepro.2021.127758.
  22. Q. Gao, Z. Liu, FeWO4 nanorods with excellent UV–visible light photocatalysis, Prog. Nat. Sci.: Mater. Int., 27 (2017) 556–560.
  23. A. Kumar, Mu. Naushad, A. Rana, Inamuddin, Preeti, G. Sharma, A.A. Ghfar, F.J. Stadler, M.R. Khan, ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photodegradative removal of Bisphenol A: symbiose of adsorption and photocatalysis, Int. J. Biol. Macromol., 104 (2017) 1172–1184.
  24. Z. Li, K. Dai, J. Zhang, C. Liang, G. Zhu, Facile synthesis of novel octahedral Cu2O/Ag3PO4 composite with enhanced visible light photocatalysis, Mater. Lett., 206 (2017) 48–51.
  25. M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis and characterization of ZnO nanocrystals from thermolysis of new precursor, Chem. Eng. J., 146 (2009) 498–502.
  26. M. Nazarkovsky, B. Czech, A. Żmudka, V.M. Bogatyrov, O. Artiushenko, V. Zaitsev, T.D. Saint-Pierre, R.C. Rocha, J. Kai, Y. Xing, W.D.G. Gonçalves, A.G. Veiga, M.L.M. Rocco, S.H. Safeer, M.V. Galaburda, V. Carozo, R.Q. Aucélio, R.J. Caraballo-Vivas, O.I. Oranska, J. Dupont, Structural, optical and catalytic properties of ZnO-SiO2 colored powders with the visible lightdriven activity, J. Photochem. Photobiol., A, 421 (2021) 113532, doi: 10.1016/j.jphotochem.2021.113532.
  27. M.A. Wahba, S.M. Yakout, R. Khaled, Interface engineered efficient visible light photocatalytic activity of MWCNTs/Co doped ZnO nanocomposites: morphological, optical, electrical and magnetic properties, Opt. Mater. (Amst), 115 (2021) 111039, doi: 10.1016/j.optmat.2021.111039.
  28. M. Yousefi, F. Gholamian, D. Ghanbari, M. Salavati-Niasari, Polymeric nanocomposite materials: preparation and characterization of star-shaped PbS nanocrystals and their influence on the thermal stability of acrylonitrile–butadiene–styrene (ABS) copolymer, Polyhedron, 30 (2011) 1055–1060.
  29. R. Monsef, M. Ghiyasiyan-Arani, M. Salavati-Niasari, Design of magnetically recyclable ternary
    Fe2O3/EuVO4/g-C3N4 nanocomposites for photocatalytic and electrochemical hydrogen storage, ACS Appl. Energy Mater., 4 (2021) 680–695.
  30. M. Salavati-Niasari, J. Hasanalian, H. Najafian, Aluminasupported FeCl3, MnCl2, CoCl2, NiCl2, CuCl2, and ZnCl2 as catalysts for the benzylation of benzene by benzyl chloride, J. Mol. Catal. A: Chem., 209 (2004) 209–214.
  31. D. Zhang, X. Zuo, W. Gao, H. Huang, H. Zhang, T. Cong, S. Yang, J. Zhang, L. Pan, Recyclable ZnO/Fe3O4 nanocomposite with piezotronic effect for high performance photocatalysis, Mater. Res. Bull., 148 (2022) 111677, doi: 10.1016/j.materresbull.2021.111677.
  32. S. Lu, Y. Ma, L. Zhao, Production of ZnO-CoOx-CeO2 nanocomposites and their dye removal performance from wastewater by adsorption-photocatalysis, J. Mol. Liq., 364 (2022) 119924, doi: 10.1016/j.molliq.2022.119924.
  33. X. Zhang, J. Peng, X. Qi, Y. Huang, J. Qiao, Y. Guo, X. Guo, Y. Wu, Nanocellulose/carbon dots hydrogel as superior intensifier of ZnO/AgBr nanocomposite with adsorption and photocatalysis synergy for Cr(VI) removal, Int. J. Biol. Macromol., 233 (2023) 123566, doi: 10.1016/j.ijbiomac.2023.123566.
  34. G. Hu, J. Yang, X. Duan, R. Farnood, C. Yang, J. Yang, W. Liu, Q. Liu, Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications, Chem. Eng. J., 417 (2021) 129209, doi: 10.1016/j.cej.2021.129209.
  35. S. Behravesh, N. Mirghaffari, A.A. Alemrajabi, F. Davar, M. Soleimani, Photocatalytic degradation of acetaminophen and codeine medicines using a novel zeolite-supported TiO2 and ZnO under UV and sunlight irradiation, Environ. Sci. Pollut. Res., 27 (2020) 26929–26942.
  36. M. Salavati-Niasari, Zeolite-encapsulation copper(II) complexes with 14-membered hexaaza macrocycles: synthesis, characterization and catalytic activity, J. Mol. Catal. A: Chem., 217 (2004) 87–92.
  37. N. Sobuś, I. Czekaj, Lactic acid conversion into acrylic acid and other products over natural and synthetic zeolite catalysts: theoretical and experimental studies, Catal. Today, 387 (2022) 172–185.
  38. J. Liu, Z. Huang, J. Sun, Y. Zou, B. Gong, Enhancing the removal performance of Cd(II) from aqueous solutions by NaA zeolite through doped thiourea reduced GO which is trapped within zeolite crystals, J. Alloys Compd., 815 (2020) 152514, doi: 10.1016/j.jallcom.2019.152514.
  39. J.R. Torres-Hernández, E. Ramírez-Morales, L. Rojas-Blanco, J. Pantoja-Enriquez, G. Oskam,
    F. Paraguay-Delgado, B. Escobar-Morales, M. Acosta-Alejandro, L.L. Díaz-Flores, G. Pérez-Hernández, Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu, Mater. Sci. Semicond. Process., 37 (2015) 87–92.
  40. Y. Costa-Marrero, M. Andrade, J. Ellena, J. Duque-Rodríguez, T. Farias, G. Autié-Castro, Zeolite/ZnO composites based on a Cuban natural clinoptilolite and preliminary evaluation in methylene blue adsorption, Mater. Res. Express, 7 (2020) 015066, doi: 10.1088/2053-1591/ab6a5c.
  41. R. Mahdavi, S.S.A. Talesh, Sol–gel synthesis, structural and enhanced photocatalytic performance of Al doped ZnO nanoparticles, Adv. Powder Technol., 28 (2017) 1418–1425.
  42. E. Chmielewská, W. Tylus, M. Bujdoš, Study of monoand bimetallic Fe and Mn oxide-supported clinoptilolite for improved Pb(II) removal, Molecules, 26 (2021) 4143, doi: 10.3390/molecules26144143.
  43. J. Cao, P. Wang, J. Shen, Q. Sun, Core-shell Fe3O4@zeolite NaA as an adsorbent for Cu2+, Materials, 13 (2020, doi: 10.3390/ ma13215047.
  44. P.L. da Silva, R.P. Nippes, P.D. Macruz, F.L. Hegeto, M.H.N.O. Scaliante, Photocatalytic degradation of hydroxychloroquine using ZnO supported on clinoptilolite zeolite, Water Sci. Technol., 84 (2021) 763–776.
  45. V.R. Batistela, L.Z. Fogaça, S.L. Fávaro, W. Caetano, N.R.C. Fernandes-Machado, N. Hioka, ZnO supported on zeolites: photocatalyst design, microporosity and properties, Colloids Surf., A, 513 (2017) 20–27.
  46. A. Khorsand Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size-strain plot methods, Solid State Sci., 13 (2011) 251–256.
  47. V. Mote, Y. Purushotham, B. Dole, Williamson–Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. Appl. Phys., 6 (2012) 2–9.
  48. V.R. Venu Gopal, S. Kamila, Effect of temperature on the morphology of ZnO nanoparticles: a comparative study, Appl. Nanosci., 7 (2017) 75–82.
  49. F. Alakhras, E. Alhajri, R. Haounati, H. Ouachtak, A.A. Addi, T.A. Saleh, A comparative study of photocatalytic degradation of rhodamine B using natural-based zeolite composites, Surf. Interfaces, 20 (2020) 100611, doi: 10.1016/j.surfin.2020.100611.
  50. R.P. Nippes, D. Frederichi, M.H.N. Olsen Scaliante, Enhanced photocatalytic performance under solar radiation of ZnO through hetero-junction with iron functionalized zeolite, J. Photochem. Photobiol., A, 418 (2021) 113373, doi: 10.1016/j.jphotochem.2021.113373.
  51. A.A. Alswata, M. Bin Ahmad, N.M. Al-Hada, H.M. Kamari, M.Z. Bin Hussein, N.A. Ibrahim, Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water, Results Phys., 7 (2017) 723–731.
  52. W. Lopes de Almeida, N.S. Ferreira, F.S. Rodembusch, V. Caldas de Sousa, Study of structural and optical properties of ZnO nanoparticles synthesized by an eco-friendly tapioca-assisted route, Mater. Chem. Phys., 258 (2021) 123926, doi: 10.1016/j.matchemphys.2020.123926.
  53. D.T. Hieu, H. Kosslick, M. Riaz, A. Schulz, A. Springer, M. Frank, C. Jaeger, N.T. Thu, L.T. Son, Acidity and stability of Brønsted acid sites in green clinoptilolite catalysts and catalytic performance in the etherification of glycerol, Catalysts, 12 (2022) 253, doi: 10.3390/catal12030253.
  54. O. Sacco, V. Vaiano, M. Matarangolo, ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis, Sep. Purif. Technol., 193 (2018) 303–310.
  55. A. Shokrollahi, S. Sharifnia, Optimization of aqueous NH4+/NH3 photodegradation by ZnO/zeolite composites using response surface modeling, Int. J. Chem. Reactor Eng., 17 (2019), doi: 10.1515/ijcre-2018-0042.
  56. Y. Xu, H. Li, B. Sun, P. Qiao, L. Ren, G. Tian, B. Jiang, K. Pan, W. Zhou, Surface oxygen vacancy defect-promoted electronhole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance, Chem. Eng. J., 379 (2020) 122295, doi: 10.1016/j.cej.2019.122295.
  57. E.T. Wahyuni, N.P. Diantariani, I. Kartini, A. Kuncaka, Enhancement of the photostability and visible photoactivity of ZnO photocatalyst used for reduction of Cr(VI) ions, Results Eng., 13 (2022) 100351, doi: 10.1016/j.rineng.2022.100351.
  58. H. Aysan, S. Edebali, C. Ozdemir, M. Celi̇k Karakaya, N. Karakaya, Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye, Microporous Mesoporous Mater., 235 (2016) 78–86.
  59. J.G. Piedra López, O.H. González Pichardo, J.A. Pinedo Escobar, D.A. de Haro del Río, H. Inchaurregui Méndez, L.M. González Rodríguez, Photocatalytic degradation of metoprolol in aqueous medium using a TiO2/natural zeolite composite, Fuel, 284 (2021) 119030, doi: 10.1016/j.fuel.2020.119030.
  60. N.P. Diantariani, I. Kartini, A. Kuncaka, E.T. Wahyuni, ZnO incorporated on natural zeolite for photodegradation of methylene blue, Rasayan J. Chem., 13 (2020) 747–756.
  61. H. Li, W. Zhang, Y. Liu, HZSM-5 zeolite supported borondoped TiO2 for photocatalytic degradation of ofloxacin, J. Mater. Res. Technol., 9 (2020) 2557–2567.
  62. C.J. Li, Y.J. Zhang, H. Chen, P.Y. He, Y. Zhang, Q. Meng, Synthesis of fly ash cenospheres-based hollow ABW zeolite for dye removal via the coupling of adsorption and photocatalysis, Adv. Powder Technol., 32 (2021) 3436–3446.
  63. M. Bahrami, A. Nezamzadeh-Ejhieh, Effect of the supported ZnO on clinoptilolite nano-particles in the photodecolorization of semi-real sample bromothymol blue aqueous solution, Mater. Sci. Semicond. Process., 30 (2015) 275–284.
  64. Z. Heidari, R. Alizadeh, A. Ebadi, N. Oturan, M.A. Oturan, Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods, Sep. Purif. Technol., 242 (2020) 116800, doi: 10.1016/j.seppur.2020.116800.