References

  1. A.D. Plessis, Persistent degradation: global water quality challenges and required actions, One Earth, 5 (2022) 129–131.
  2. C.O. Okoye, R. Nyaruaba, R.E. Ita, S.U. Okon, C.I. Addey, C.C. Ebido, A.O. Opabunmi, E.S. Okeke, K.I. Chukwudozie, Antibiotic resistance in the aquatic environment: analytical techniques and interactive impact of emerging contaminants, Environ. Toxicol., 96 (2022) 103995, doi: 10.1016/j.etap.2022.103995.
  3. J. Gao, L. Li, L. Duan, M. Yang, X. Zhou, Q. Zheng, Y. Ou, Z. Li, F.Y. Lai, Exploring antibiotic consumption between urban and sub-urban catchments using both parent drugs and related metabolites in wastewater-based epidemiology, Sci. Total Environ., 827 (2022) 154171, doi: 10.1016/j.scitotenv.2022.154171.
  4. C. Zhao, L. Xin, X. Xu, Y. Qin, W. Wu, Dynamics of antibiotics and antibiotic resistance genes in four types of kitchen waste composting processes, J. Hazard. Mater., 424 (2022) 127526, doi: 10.1016/j.jhazmat.2021.127526.
  5. J. Wang, L. Chu, L. Wojnárovits, E. Takács, Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview, Sci. Total Environ., 744 (2020) 140997, doi: 10.1016/j.scitotenv.2020.140997.
  6. L. Chen, Q. Li, X. Xiao, T. Meng, Y. Zhang, Z. Wei, Y. Cao, Predicted non-effect concentration and risk assessment of typical tetracycline antibiotics, Asian J. Ecotoxicol., 16 (2021) 334–346.
  7. E.K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics, Water Res., 43 (2009) 2419–2430.
  8. H. Zhao, Z. Wang, Y. Liang, T. Wu, Y. Chen, J. Yan, Y. Zhu, D. Ding, Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar, Environ. Res., 226 (2023) 115676, doi: 10.1016/j.envres.2023.115676.
  9. S. Liang, H. Zhang, H. Dai, X. Wan, F. Zhu, Q. Xu, W. Ji, Efficient, rapid and simple adsorption method by polydopamine polystyrene nanofibers mat for removal of multi-class antibiotic residues in environmental water, Chemosphere, 288 (2022) 132616, doi: 10.1016/j.chemosphere.2021.132616.
  10. J. Liu, H. Lin, Y. Dong, Y. He, W. Liu, Y. Shi, The effective adsorption of tetracycline onto MoS2@Zeolite-5: adsorption behavior and interfacial mechanism, J. Environ. Chem. Eng., 9 (2021) 105912, doi: 10.1016/j.jece.2021.105912.
  11. Y. Sun, M. Chen, H. Liu, Y. Zhu, D. Wang, M. Yan, Adsorptive removal of dye and antibiotic from water with functionalized zirconium-based metal organic framework and graphene oxide composite nanomaterial Uio-66-(OH)2/GO, Appl. Surf. Sci., 525 (2020) 146614, doi: 10.1016/j.apsusc.2020.146614.
  12. K. Rohit, S.R. Sharan, M. Devendra, Comparative study for sorption of arsenic on peanut shell biochar and modified peanut shell biochar, Bioresour. Technol., 375 (2023) 128831, doi: 10.1016/j.biortech.2023.128831.
  13. D. Cheng, H.H. Ngo, W. Guo, S.W. Chang, D.D. Nguyen, X. Zhang, S. Varjani, Y. Liu, Feasibility study on a new pomelo peel derived biochar for tetracycline antibiotics removal in swine wastewater, Sci. Total Environ., 720 (2020) 137662, doi: 10.1016/j.scitotenv.2020.137662.
  14. Z.T. Liu, J. Shao, Y. Li, Y.R. Wu, Y. An, Y.F. Sun, Z.H. Fei, Adsorption performance of tetracycline in water by alkalimodified wheat straw biochars, Chin. Environ. Sci., 42 (2022) 3736–3743.
  15. W. Hu, Y. Niu, K. Dong, D. Wang, Removal mechanism of typical antibiotics by bagasse biochar, Technol. Water Treat., 48 (2022) 52–56.
  16. J. Yu, H. Ding, Z.L. Zhang, Y. Li, L. Ding, Sorption characteristics and mechanism of oxytetracycline in water by modified biochar derived from chestnut shell, Chin. Environ. Sci., 41 (2021) 5688–5700.
  17. Y. Zhou, J.J. Shi, G.J. Qian, J.P. Hu, Z.L. Chen, Removal of amoxicillin from aqueous solution using Chinese’s sugarcane bagasse biochar, J. Safe. Environ., 23 (2023) 268–277.
  18. H.Y. Deng, H.X. He, W.B. Li, T. Abbas, Z.F. Liu, Characterization of amphoteric bentonite-loaded magnetic biochar and its adsorption properties for Cu2+ and tetracycline, PeerJ., 10 (2022) e13030, doi: 10.7717/peerj.13030.
  19. Y. Zou, H.Y. Deng, M. Li, Y.H. Zhao, W.B. Li, Enhancing tetracycline adsorption by riverbank soils by application of biochar-based composite materials, Desal. Water Treat., 207 (2020) 332–340.
  20. Q. Yang, P. Wu, Preparation of modified porous biochar and its adsorption properties for tetracycline in water, J. Environ. Sci., 39 (2019) 3973–3984.
  21. Y. Ma, P. Li, L. Yang, L. Wu, L. He, F. Gao, X. Qi, Z. Zhang, Iron/zinc and phosphoric acid modified sludge biochar as an efficient adsorbent for fluoroquinolones antibiotics removal, Ecotoxicol. Environ. Saf., 196 (2020) 110550, doi: 10.1016/j.ecoenv.2020.110550.
  22. C. Duan, N. Zhao, X. Yu, X. Zhang, J. Xu, Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution, Cellulose, 20 (2013) 849–860.
  23. Y. Liu, X. He, X. Duan, Y. Fu, D.D. Dionysiou, Photochemical degradation of oxytetracycline: influence of pH and role of carbonate radical, Chem. Eng. J., 276 (2015) 113–121.
  24. P. Prarat, P. Hongsawat, P. Punyapalakul, Amino-functionalized mesoporous silica-magnetic graphene oxide nanocomposites as water-dispersible adsorbents for the removal of the oxytetracycline antibiotic from aqueous solutions: adsorption performance, effects of coexisting ions, and natural organic matter, Environ. Sci. Pollut. Res., 27 (2020) 6560–6576.
  25. H.N. Tran, E.C. Lima, R.S. Juang, J.C. Bollinger, H.P. Chao, Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: a comparison study, J. Environ. Chem. Eng., 9 (2021) 106674, doi: 10.1016/j.jece.2021.106674.
  26. R. Acosta, V. Fierro, A. Martinez de Yuso, D. Nabarlatz, A. Celzard, Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char, Chemosphere, 149 (2016) 168–176.
  27. Y.F. Wang, H.Y. Deng, W.B. Li, A. Touqeer, M. Li, J.N. Wu, J.M. Ouyang, Litter extract from Alternanthera philoxeroides as an efficient passivator for oxytetracycline stability in riverbank purple soils, Environ. Technol. Innovation, 29 (2023) 103022, doi: 10.1016/j.eti.2023.103022.
  28. Z.W. Zhao, C. Chen, Z.J. Liang, F.Y. Cui, Enhanced adsorption activity of manganese oxide-modified biochar for the removal of tetracycline from aqueous solution, J. Agro-Environ. Sci., 40 (2021) 194–201.
  29. H. Maria, G. Ciobanu, Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite, Sci. Total Environ., 628/629 (2018) 36–43.
  30. W.B. Li, S.N. Zhou, H.Y. Deng, A. Touqeer, Performance comparison of Mg-loaded amphoteric clays in antibiotics adsorption from aqueous solutions, Desal. Water Treat., 278 (2022) 159–168.
  31. Y. Sun, Q. Yue, B. Gao, Q. Li, L. Huang, F. Yao, X. Xu, Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption, J. Colloid Interface Sci., 368 (2012) 521–527.
  32. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, X. Su, Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, J. Colloid Interface Sci., 368 (2012) 540–546.
  33. Y. Qiu, Z. Zheng, Z. Zhou, G.D. Sheng, Effectiveness and mechanisms of dye adsorption on a straw-based biochar, Bioresour. Technol., 100 (2009) 5348–5351.
  34. F. Saremi, M.R. Miroliaei, M.S. Nejad, H. Sheibani, Adsorption of tetracycline antibiotic from aqueous solutions onto vitamin B6-upgraded biochar derived from date palm leaves, J. Mol. Liq., 318 (2020) 114126, doi: 10.1016/j.molliq.2020.114126.
  35. P. Huang, C. Ge, D. Feng, H. Yu, J. Luo, J. Li, P.J. Strong, A.K. Sarmah, N.S. Bolan, H. Wang, Effects of metal ions and pH on ofloxacin sorption to cassava residue-derived biochar, Sci. Total Environ., 616–617 (2018) 1384–1391.
  36. W.B. Li, M.T. Guo, Y.F. Wang, H.Y. Deng, H. Lei, C.T. Yu, Z.F. Liu, Selective adsorption of heavy metal ions by different composite-modified semi-carbonized fibers, Sep. Purif. Technol., 328 (2023) 125022, doi: 10.1016/j.seppur.2023.125022.
  37. A.R. Lucaci, D. Bulgariu, I. Ahmad, G. Lisă, A.M. Mocanu, L. Bulgariu, Potential use of biochar from various waste biomass as biosorbent in Co(II) removal processes, Water, 11 (2019) 1565, doi: 10.3390/w11081565.
  38. W.B. Li, H.Y. Deng, Y. Ye, S.N. Zhou, A. Touqeer, J.M. Ouyang, Q. Kuang, W. Liu, Effect of pH on adsorptive and cycling performance of amphoteric clay-loaded biochar, Desal. Water Treat., 264 (2022) 111–120.