References

  1. G. Bertanza, M. Canato, G. Laera, M.C. Tomei, Methodology for technical and economic assessment of advanced routes for sludge processing and disposal, Environ. Sci. Pollut. Res. Int., 22 (2015) 7190–7202.
  2. Q. Wang, W. Zhang, Z. Yang, Q. Xu, P. Yang, D. Wang, Enhancement of anaerobic digestion sludge dewatering performance using in-situ crystallization in combination with cationic organic polymers flocculation, Water Res., 146 (2018) 19–29.
  3. M.L. Christensen, K. Keiding, P.H. Nielsen, M.K. Jørgensen, Dewatering in biological wastewater treatment: a review, Water Res., 82 (2015) 14–24.
  4. B. Wu, X. Dai, X. Chai, Critical review on dewatering of sewage sludge: influential mechanism, conditioning technologies and implications to sludge re-utilizations, Water Res., 180 (2020) 115912, doi: 10.1016/j.watres.2020.115912.
  5. Y. Li, X. Yuan, D. Wang, H. Wang, Z. Wu, L. Jiang, D. Mo, G. Yang, R. Guan, G. Zeng, Recyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological properties, Bioresour. Technol., 262 (2018) 294–301.
  6. R. Han, B. Zhou, Y. Huang, X. Lu, S. Li, N. Li, Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018, J. Cleaner Prod., 276 (2020) 123249, doi: 10.1016/j.jclepro.2020.123249.
  7. Y. Chen, M. Lin, D. Zhuang, Wastewater treatment and emerging contaminants: bibliometric analysis, Chemosphere, 297 (2022) 133932, doi: 10.1016/j.chemosphere.2022.133932.
  8. L.C. Ampese, W.G. Sganzerla, H. Di Domenico Ziero, A. Mudhoo, G. Martins, T. Forster-Carneiro, Research progress, trends, and updates on anaerobic digestion technology: a bibliometric analysis, J. Cleaner Prod., 331 (2022) 130004, doi: 10.1016/j.jclepro.2021.130004.
  9. D. Zhang, Y. Sun, B. Angelotti, Z.-W. Wang, Understanding the dewaterability of aerobic granular sludge formed in continuous flow bioreactors treating real domestic wastewater: Is it really better than that of activated sludge?, J. Water Process Eng., 36 (2020) 101253, doi: 10.1016/j.jwpe.2020.101253.
  10. J. Wu, G.-q. Wang, Z.P. Cao, Z.-h. Li, Y. Hu, K.-j. Wang, J.-e. Zu, Pilot study of thermal treatment/thermophilic anaerobic digestion process treating waste activated sludge of high solid content, Huan jing ke xue, 35 (2014) 3461–3465.
  11. Y. Liu, H.H.P. Fang, Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge, Crit. Rev. Env. Sci. Technol., 33 (2003) 237–273.
  12. C. He, A. Giannis, J.-Y. Wang, Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior, Appl. Energy, 111 (2013) 257–266.
  13. C. Chen, L. Leydesdorff, Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis, J. Am. Soc. Inf. Sci. Technol., 65 (2014) 334–351.
  14. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  15. X.Y. Li, S.F. Yang, Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge, Water Res., 41 (2007) 1022–1030.
  16. A. Kelessidis, A.S. Stasinakis, Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries, Waste Manage., 32 (2012) 1186–1195.
  17. G. Yang, G. Zhang, H. Wang, Current state of sludge production, management, treatment and disposal in China, Water Res., 78 (2015) 60–73.
  18. S. Pilli, P. Bhunia, S. Yan, R.J. LeBlanc, R.D. Tyagi, R.Y. Surampalli, Ultrasonic pretreatment of sludge: a review, Ultrason. Sonochem., 18 (2011) 1–18.
  19. S.N. Murthy, J.T. Novak, Factors affecting floc properties during aerobic digestion: implications for dewatering, Water Environ. Res., 71 (1999) 197–202.
  20. H. Masihi, G. Badalians Gholikandi, Employing electrochemical- Fenton process for conditioning and dewatering of anaerobically digested sludge: a novel approach, Water Res., 144 (2018) 373–382.
  21. J. Zhang, N. Li, X. Dai, W. Tao, I.R. Jenkinson, Z. Li, Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: new insights through structure evolution, Water Res., 131 (2018) 177–185.
  22. S. Bonilla, D.G. Allen, Cationic proteins for enhancing biosludge dewaterability: a comparative assessment of surface and conditioning characteristics of synthetic polymers, surfactants and proteins, Sep. Purif. Technol., 191 (2018) 200–207.
  23. C. Bian, D. Ge, G. Wang, Y. Dong, W. Li, N. Zhu, H. Yuan, Enhancement of waste activated sludge dewaterability by ultrasound-activated persulfate oxidation: operation condition, sludge properties, and mechanisms, Chemosphere, 262 (2021) 128385, doi: 10.1016/j.chemosphere.2020.128385.
  24. D. Ge, H. Yuan, Y. Shen, W. Zhang, N. Zhu, Improved sludge dewaterability by tannic acid conditioning: temperature, thermodynamics and mechanism studies, Chemosphere, 230 (2019) 14–23.
  25. H. Masihi, G. Badalians Gholikandi, Using acidic-modified bentonite for anaerobically digested sludge conditioning and dewatering, Chemosphere, 241 (2020) 125096, doi: 10.1016/j.chemosphere.2019.125096.
  26. K.B. Thapa, Y. Qi, A.F.A. Hoadley, Interaction of polyelectrolyte with digested sewage sludge and lignite in sludge dewatering, Colloids Surf., A, 334 (2009) 66–73.
  27. Y. Qi, K.B. Thapa, A.F.A. Hoadley, Application of filtration aids for improving sludge dewatering properties – a review, Chem. Eng. J., 171 (2011) 373–384.
  28. Y. Zheng, Z. Zhou, C. Cheng, Z. Wang, H. Pang, L. Jiang, L.-M. Jiang, Effects of packing carriers and ultrasonication on membrane fouling and sludge properties of anaerobic side-stream reactor coupled membrane reactors for sludge reduction, J. Membr. Sci., 581 (2019) 312–320.
  29. P. Alvarenga, M. Farto, C. Mourinha, P. Palma, Beneficial use of dewatered and composted sewage sludge as soil amendments: behaviour of metals in soils and their uptake by plants, Waste Biomass Valorization, 7 (2016) 1189–1201.
  30. K. Fijalkowski, A. Rorat, A. Grobelak, M.J. Kacprzak, The presence of contaminations in sewage sludge – the current situation, J. Environ. Manage., 203 (2017) 1126–1136.
  31. E. Yakamercan, A. Ari, A. Aygün, Land application of municipal sewage sludge: human health risk assessment of heavy metals, J. Cleaner Prod., 319 (2021) 128568, doi: 10.1016/j.jclepro.2021.128568.
  32. S. Singh, V. Kumar, D.S. Dhanjal, S. Datta, D. Bhatia, J. Dhiman, J. Samuel, R. Prasad, J. Singh, A sustainable paradigm of sewage sludge biochar: valorization, opportunities, challenges and future prospects, J. Cleaner Prod., 269 (2020) 122259, doi: 10.1016/j.jclepro.2020.122259.
  33. S.-J. Yuan, X.-H. Dai, Facile synthesis of sewage sludgederived mesoporous material as an efficient and stable heterogeneous catalyst for photo-Fenton reaction, Appl. Catal., B, 154–155 (2014) 252–258.
  34. G. Yu, D. Chen, U. Arena, Z. Huang, X. Dai, Reforming sewage sludge pyrolysis volatile with Fe-embedded char: minimization of liquid product yield, Waste Manage., 73 (2018) 464–475.
  35. M. Mainardis, M. Buttazzoni, F. Gievers, C. Vance, F. Magnolo, F. Murphy, D. Goi, Life cycle assessment of sewage sludge pretreatment for biogas production: from laboratory tests to full-scale applicability, J. Cleaner Prod., 322 (2021) 129056, doi: 10.1016/j.jclepro.2021.129056.
  36. E. Uggetti, I. Ferrer, E. Llorens, J. García, Sludge treatment wetlands: a review on the state of the art, Bioresour. Technol., 101 (2010) 2905–2912.
  37. J. Vincent, P. Molle, C. Wisniewski, A. Liénard, Sludge drying reed beds for septage treatment: towards design and operation recommendations, Bioresour. Technol., 102 (2011) 8327–8330.
  38. Y. Gao, L. Ge, S. Shi, Y. Sun, M. Liu, B. Wang, Y. Shang, J. Wu, J. Tian, Global trends and future prospects of e-waste research: a bibliometric analysis, Environ. Sci. Pollut. Res. Int., 26 (2019) 17809–17820.
  39. G.H. Yu, P.J. He, L.M. Shao, P.P. He, Stratification structure of sludge flocs with implications to dewaterability, Environ. Sci. Technol., 42 (2008) 7944–7949.
  40. S. Bala Subramanian, S. Yan, R.D. Tyagi, R.Y. Surampalli, Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering, Water Res., 44 (2010) 2253–2266.
  41. W. Wei, Q. Wang, L. Zhang, A. Laloo, H. Duan, D.J. Batstone, Z. Yuan, Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion, Water Res., 130 (2018) 13–19.
  42. M. Priyadarshini, I. Das, M.M. Ghangrekar, L. Blaney, Advanced oxidation processes: performance, advantages, and scale-up of emerging technologies, J Environ Manage, 316 (2022) 115295, doi: 10.1016/j.jenvman.2022.115295.
  43. L. Wang, Y. Chang, A. Li, Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review, Renewable Sustainable Energy Rev., 108 (2019) 423–440.
  44. S. Aggarwal, M. Hakovirta, Supercritical carbon dioxide drying of municipal sewage sludge – novel waste-to-energy valorization pathway, J. Environ. Manage., 285 (2021) 112148, doi: 10.1016/j.jenvman.2021.112148.
  45. H. Zhang, L. Rigamonti, S. Visigalli, A. Turolla, P. Gronchi, R. Canziani, Environmental and economic assessment of electro-dewatering application to sewage sludge: a case study of an Italian wastewater treatment plant, J. Cleaner Prod., 210 (2019) 1180–1192.
  46. F. Gievers, A. Loewen, M. Nelles, Life cycle assessment of sewage sludge pyrolysis: environmental impacts of biochar as carbon sequestrator and nutrient recycler, Detritus, 16 (2021) 94–105.